
Executive Summary of the Thesis

Physics-based Neural Network modelling, Predictive Control and
Lifelong Learning applied to District Heating Systems

Laurea Magistrale in Automation and Control Engineering - Ingegneria
dell’Automazione

Author: Laura Boca de Giuli

Advisor: Prof. Riccardo Scattolini

Co-advisor: Prof. Alessio La Bella

Academic year: 2021-2022

1. Introduction
The growing issue of climate change calls for
ever-increasing advanced technological solutions
capable of dealing with it. In particular, Dis-
trict Heating Systems (DHSs) are pointed out as
important tools to reach energy transition tar-
gets. A DHS is in fact an energy system used
to deliver the heat generated in a centralized
station through insulated water pipelines, com-
monly named District Heating Network or DHN,
both for residential and for commercial pur-
poses. In the state-of-the-art DHSs literature,
the vast majority of control strategies proposed
are based on the physical model equations. This
thesis, instead, aims at identifying a DHN model
through a machine learning technique, namely
Recurrent Neural Networks, which are particu-
larly suitable to identify the non-linearities of
such a complex thermo-hydraulic system. How-
ever, in order to exploit both data-driven meth-
ods and physical knowledge, a Physics-based Re-
current Neural Network (PB-RNN) implementa-
tion is proposed. In particular, the main chal-
lenge of the thesis consists in developing a neu-
ral network that is capable of representing the
physical interactions between the main elements

of the system under investigation. This objec-
tive is achieved by making the PB-RNN resem-
ble the physical system modular structure. Af-
ter the identification of a performing model, the
latter is exploited in a Model Predictive Control
(MPC) strategy to optimize the district heat-
ing system operation by minimizing its electri-
cal cost. Finally, a lifelong learning algorithm
is presented in order to monitor the DHS in the
long run. In detail, the algorithm is intended
to continually supervise the plant so as to de-
tect and solve potential anomalies. The over-
all target is to refine the existing system model
by acquiring continuous information, while pre-
venting the new knowledge from significantly in-
terfering with past data.

2. District Heating Systems
A district heating system consists of four main
parts: a forward-flow part, which provides hot
water to consumers (the "supply" network),
consumers, that use hot water for heating, a
backward-flow part, which transports the cooled
water back to the heating station (the "return"
network) and the heating station, where the
warming of the cooled water takes place [3].

1

Executive summary Laura Boca de Giuli

In particular, the fundamental components of
a district heating system are here briefly de-
scribed, whereas the mass, momentum and en-
ergy balance equations that govern the various
elements are thoroughly deepened in [3]. First,
the gas boiler is a heater which provides heat
to the network flowing water, i.e. it sets the
desired supply temperature. Another crucial el-
ement is the pressure pump, used to impose a
constant differential pressure between its inlet
and outlet port without losses and at any mass
flow rate. Moreover, an expansion vessel is mod-
elled to impose a certain pressure reference in
the backward-flow part of the DHS. Clearly, wa-
ter is delivered to users through a pipeline net-
work (DHN): pipes are the elements that intro-
duce transport delay effects on temperature pro-
files. Lastly, a DHS is made of several consumers
or thermal loads: actually, each user is an aggre-
gation of loads that could be houses, industrial
facilities or commercial buildings.
In the thesis, all the experiments are carried out
on a specific system: a referenced DHN named
AROMA network, whose physical governing
equations are described in [3]. A schematic rep-
resentation is reported in Figure 1, where the
five users composing the system are highlighted
in green.

Figure 1: AROMA network schematic represen-
tation: forward-flow arcs are plotted in solid
red, backward-flow arcs in dashed blue, loads
in green.

The aforementioned DHS is developed and sim-
ulated through the Modelica environment, sub-
sequently paired with MATLAB and Simulink
for control and identification purposes. Finally,
the main network variables that are going to be
studied and identified in the remaining of the
work are the load supply and return tempera-
tures, together with the mass flow rates, plus the

overall return temperature and mass flow rate.

3. Model Identification
For complex large-scale processes with countless
phenomena occurring simultaneously, an accu-
rate physics-based dynamic model may be im-
possible to develop. Consequently, the first
goal of the thesis is to describe the AROMA
DHN through data-driven techniques. The lat-
ter deal with the problem of building mathemat-
ical models of dynamical systems based on ob-
served data from the plant itself. It is worth
recalling that the system under analysis is fed
with inputs (plus external disturbances) and it
produces outputs, that are exactly what iden-
tification aims to get. Therefore, the proce-
dure to follow is quite straightforward: input
and output signals from the system are collected
and processed by a data analysis technique so
as to infer a model [4]. In order to quanti-
tatively evaluate the identification results it is
useful to define an assessment rule, such as the
FIT index, i.e. FIT =

(
1− ||yreal−yid||2

||yreal−yavg ||2

)
· 100

and the coefficient of determination, i.e. R2 =(
1−

∑T
i=1(yi,real−yi,id)

2

∑T
i=1(yi,real−yavg)2

)
· 100, where yid is the

vector of identified outputs, yreal the vector of
the real ones and yavg is its average.
After collecting a huge number of samples
through a simulation in which many pseudoran-
dom binary signals are fed to the system, various
identification techniques can be exploited. In
particular, classical linear models such as State-
space, Autoregressive with external input and
Output-error models are tested in order to iden-
tify the main AROMA network variables. How-
ever, these methods turn out to have poor pre-
dictive accuracy (low FIT values). Indeed, since
the system under control is characterized by a
non-linear behaviour, it is evident that stan-
dard linear model structures are not appropri-
ate. For this reason, it is convenient to exploit
other black-box identification techniques, such
as Recurrent Neural Networks (RNNs), particu-
larly suitable to process time series data.
In general, RNNs are stateful neural networks
that can be described as a dynamical state-space
model: {

xk+1 = f(xk, uk; Φ)

yk = g(xk, uk; Φ)
(1)

2

Executive summary Laura Boca de Giuli

where x ∈ Rnx is the state vector, u ∈ Rnu is the
input, y ∈ Rny is the output and Φ is the set of
parameters (weights and biases) that are com-
puted during the training procedure [1]. The
most advanced RNN architectures include the
category of gated RNN, in which the internal
loops are regulated by the so-called gates, that
make them more suitable to learn dynamical sys-
tems [1]. To be precise, Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU)
belong to this neural networks group and are
here employed.
In detail, the RNNs training is implemented
in Python, exploiting the so-called Truncated
Back-Propagation Through Time (TBPTT) and
testing a number of hyperparameters (hidden
layers, neurons and optimizers). By comparing
the performance indexes (R2

min, R2
max, FIT, best

epoch and training time) of the different com-
binations of neural networks and hyperparam-
eters, it is possible to draw some conclusions.
Indeed, a GRU network made of two hidden
layers with 14 neurons each and exploiting the
ADAM optimizer is the most suitable to predict
the main AROMA network variables behaviour.
From the study of the minimum and maximum
performance indexes value, it turns out that the
variables associated to the closest users with re-
spect to the heating station are the simplest to
identify (high R2), whereas the variables related
to the furthest consumers are the most trouble-
some (low R2) because of the major pressure
losses occurring in pipes. However, standard
RNNs do not allow to solve this type of local
problems, because of their abstract structure.
Therefore, it is intuitive to think that a neu-
ral network architecture inspired by the physical
topology of the system may be helpful.

4. Physics-based Recurrent
Neural Networks

When developing predictive models for control
purposes, one has to balance model accuracy,
complexity and robustness. In general, machine
learning-only or physics-only approaches may
not be sufficient for very complex and wide sys-
tems such as DHNs [2]. For this reason, the key
challenge of the thesis consists in developing a
Physics-based Machine Learning (PB-ML) algo-
rithm able to improve standard RNNs perfor-
mance. Because of the huge applicability range

of the approach, PB-ML is having great suc-
cess in the scientific community. However, the
vast majority of the methods are either strongly
problem-dependent or they simply include an
upgraded loss function which is informed by the
physical equations of the system. Unfortunately,
in the AROMA network case, the RNN imple-
mentation where the loss function is guided by
a physical constraint (the supply temperature
must be always greater than the return one) does
not bring significant improvements over stan-
dard RNNs performance. Consequently, instead
of simply altering the loss function, it makes
more sense to drastically modify the RNN ar-
chitecture, so as to make it resemble the DHN
topology. In fact, the novel idea proposed by
this work is to model each load (or loads cluster)
as a RNN with a single hidden layer, so that its
predicted output variables are given as inputs to
the subsequent consumers (again each one mod-
elled as a RNN) that are directly affected by the
former (see Figure 2).

𝑻𝒊
𝒓

𝑻𝒊
𝒔

𝑷𝒊

𝑻𝒊−𝟏
𝒔

𝒎𝒊

LOAD
i

𝑻𝒊−𝟏
𝒔

𝑷𝒊

𝑻𝒊
𝒔

𝑻𝒊
𝒓 𝒎𝒊

𝐺𝑅𝑈𝑖

Figure 2: Representation of how the ith load
(green) and variables of the physical system are
turned into a RNN model. Its inputs are de-
picted in light-blue, the outputs in orange.

Specifically, each forward pipe connected to the
ith user and the consumer itself are hard-coded
as a GRU network whose input is, besides
power, the supply temperature(s) of the preced-
ing load(s). In detail, from several experiments
it turns out that each GRU in a meshed network
must be fed with the supply temperatures of the
just preceding loads, regardless of the mass flow
rate direction. In this way, each load is informed
about what happens, in terms of temperature,
just before its location and not only in the heat-
ing station, as in the original RNN. Moreover,
as far as power is concerned, it is convenient
to feed the ith load (GRU) with its associated
power consumption plus the summation of the

3

Executive summary Laura Boca de Giuli

other load profiles, in order to give each GRU
the information regarding the overall situation of
the heating system. Finally, the return network
is implemented as a single-layer GRU receiving
as input each load return temperature and mass
flow rate. Overall, the so-implemented PB-RNN
is made by six GRU networks, each one with its
specific inputs (see Figure 3).

𝐺𝑅𝑈6

𝐺𝑅𝑈2

𝐺𝑅𝑈1 𝐺𝑅𝑈3 𝐺𝑅𝑈5

𝐺𝑅𝑈4

Figure 3: Physics-based RNN scheme.

The Python implementation is assisted by the
graph theory: once the incidence matrix describ-
ing the physical system interconnections is de-
fined, the training procedure can start. Actually,
another important parameter, which defines how
many neurons are assigned to each GRU (or
GRU layer), must be chosen. In fact, thanks to
the physical correspondence between a user and
the associated RNN, it is possible to allocate a
greater number of neurons where the identifica-
tion performance is normally poor (most distant
users). Ultimately, it is reasonable to claim that
the further the consumer, the higher the number
of neurons assigned to the corresponding GRU
network.
By comparing the FIT trend of a PB-RNN
made up of six GRUs and the FIT trend of a
six-layer standard RNN (having the same aver-
age amount of neurons per layer), it is possible
to graphically understand the strength of the
physics-informed method (see Figure 4). The
PB-GRU, in fact, reaches a higher FIT value
in a smaller amount of time. In particular, the
standard GRU with [15,15,15,15,15,15] neurons
attains the maximum average FIT of 72.6% af-
ter 1495 epochs, in an overall training time of
two hours and twenty-nine minutes. In addition,
the associated R2 indexes are R2

min = 69.7%
and R2

max = 97.5%. By contrast, the PB-GRU
with [9,9,9,16,16,30] neurons reaches the maxi-
mum average FIT of 83.3% after 355 epochs, in

an overall training time of one hour and twelve
minutes. Additionally, its associated R2 indexes
are R2

min = 89.4% and R2
max = 98.5%.

0 500 1000 1500

Epochs

0

10

20

30

40

50

60

70

80

90

F
IT

 [
%

]

Figure 4: Comparison, over 1500 epochs, be-
tween the FIT trend of a traditional RNN (red)
and of a physics-based one (yellow). The target
FIT is represented in blue.

From this test and values it should be clear how
the PB-GRU outperforms the standard RNN,
even though the two networks are characterized
by the same hyperparameters (number of lay-
ers, neurons and optimizer). Indeed, thanks to
a network structure that resembles the physical
system topology it is possible to place a greater
number of neurons only where strictly necessary.
To sum up, the PB-GRU achieves greater FIT
and R2 values in a smaller amount of training
time, and, thanks to its physical interpretability,
it is also easier to detect and thus solve identifi-
cation issues.

5. Model Predictive Control
Once a performing system model is identified,
it is possible to develop a control strategy. In
particular, it is convenient to exploit the pop-
ular Non-linear Model Predictive Control algo-
rithm because of its well-known astonishing per-
formance. The basic concept is to transform the
control synthesis problem into an optimization
one, so as to achieve a time invariant control
law.
In this framework, the control variable that must
be manipulated to reach the optimization tar-
gets is the boiler temperature. In particular,
the main objective of the finite horizon control
optimization problem is to minimize the elec-
trical cost of the boiler (time varying parame-
ter), while fulfilling power, mass flow rate and
temperature constraints. Indeed, both because
of computational reasons and physical limita-

4

Executive summary Laura Boca de Giuli

tions, state, input and output constraints are
inserted in the problem formulation. Addition-
ally, in order to reduce the computational effort,
some strategies can be adopted. First, a sam-
pling time of five minutes (both for the MPC
and for the PB-GRU model) is selected so that
a prediction horizon of six hours can be chosen.
Besides, along with a warm start initialization,
a blocking strategy is implemented: in this way,
the control variable is fixed for thirty minutes
and the optimization procedure carried out by
CasaADi paired with Ipopt is not overloaded.
Finally, the use of the GRU network for model
predictive control purposes calls for the avail-
ability of a state estimate. To this end, an open-
loop observer replicating the system dynamics
by means of the PB-GRU non-linear equations
is designed.
The MPC scheme is reported in Figure 5.

Real output

State
estimate

Disturbances

Control action

Output
estimate

Observer

MPC Plant

Figure 5: MPC scheme.

By carrying out a daily optimization procedure
both with a 54-state PB-RNN and with a 54-
state standard RNN, it is possible to observe
that the most accurate model (PB-GRU) yields
the best optimization and control results: a
faster execution, less constraints violation and
cost savings with respect to the standard GRU
model.

6. Lifelong Learning
In the long run, it is very likely that throughout
the lifespan of a system various changes occur,
such as structural adjustments or unusual oper-
ating conditions. As a consequence, the system
model initially employed does no longer consti-
tute a precise description of the plant. Thereby,
it comes the need to regularly monitor and hence
adapt the original model to changes, while still
preserving previously gained knowledge.
A lifelong learning system is indeed defined as

an adaptive algorithm capable of learning from
a continuous stream of information, with such
knowledge becoming progressively available over
time and where the number of tasks to be
learned is not predefined. Critically, the accom-
modation of new information should occur with-
out catastrophic forgetting or interference [5].
In order to deal with the problem of model
change, a novel methodological algorithm is pro-
posed. In practice, when the RMSE between
the measured output variables and the ones pre-
dicted by the existing PB-GRU model over-
shoots a certain threshold, then something in
the system has changed. Therefore, from the
computation of the Mahalanobis distance (T 2)
of input and output variables it is possible to
distinguish whether a change in the plant or in
the operating conditions occurred. In fact, if
the statistical distance between the current in-
puts and the training ones exceeds its threshold,
then the actual operating conditions are statisti-
cally far from the original ones. In the opposite
case, there has been a change in the plant struc-
ture as the input values are within the training
set boundaries. The just explained strategy is
synthesized in Algorithm 1.

Algorithm 1 Lifelong Learning Algorithm
1: Compute RMSEi ∀i ∈ {1, .., ny}
2: if RMSEi ≤ RMSEi ∀i ∈ {1, .., ny}

then
3: do nothing
4: else if ∃i ∈ {1, .., ny}|RMSEi > RMSEi

then
5: compute Mahalanobis distances
6: if (T 2(u) ≤ T 2

α(u)) ∧ (T 2(y) > T 2
α(y))

then
7: change in the plant: Moving Horizon

Estimation
8: else if (T 2(u) > T 2

α(u))∧(T 2(y) > T 2
α(y))

then
9: change in the operating conditions: ad-

ditive uncertainty identification
10: end if
11: end if

6.1. Plant Change Scenario
If a change in the plant structure or parameters
is detected, then a new model must be found:
the old one is no longer able to correctly capture
the plant dynamics. To this end, we propose a

5

Executive summary Laura Boca de Giuli

Moving Horizon Estimation algorithm that op-
timizes the neural network model parameters.
Actually, differently from the traditional strat-
egy, only the output layers weights and biases
are optimized so as to significantly reduce the
computational effort and to avoid catastrophic
forgetting. In particular, a test is carried out on
a drastically modified plant. The validation re-
sults are pretty explicative: the new model char-
acterized by the re-optimized output parameters
reaches an average R2 value of 91.6%, outper-
forming the old PB-GRU model which scores
R2

avg = −117.4%.

6.2. Operating Conditions Change
Scenario

When an operating conditions shift is detected,
it is not necessary to re-build a model. Indeed,
the existing PB-GRU is still able to predict the
system dynamics in the vast majority of working
conditions. For this reason, it is convenient to
simply add an incremental (or additive) neural
network, once again physics-based, whose aim is
to estimate the dynamics of the prediction error
committed by the old PB-GRU. To this end, the
additive PB-GRU must be trained from scratch
with a reasonable amount of normal and abnor-
mal operating conditions. In addition, for con-
trol purposes, the incremental network can be
characterized by a smaller number of neurons
with respect to the original one, being the error
dynamics pretty limited. Finally, a validation
test is carried out on the original plant fed with
anomalous working conditions (out of the initial
training range). In particular, the new overall
neural network, made by the summation of the
original and the incremental PB-GRU, reaches
an average R2 value of 91.9%. By contrast, the
original PB-GRU model alone attains the value
of R2

avg = 78.3%. These results confirm that
when abnormal power requests occur, the ini-
tial PB-GRU must be helped by an incremental
network.

7. Conclusions
To sum up, the main work challenges have been
successfully tackled. The first accomplishment
is the modelling of a DHN through data-driven
methods, and in particular via recurrent neural
networks. However, the crucial contribution of
the thesis consists in the implementation of a

physics-based RNN. In fact, thanks to a struc-
ture of the neural network that resembles the
physical system topology and interactions, many
enhancements with respect to standard RNNs
are attained. In addition, a further achievement
of the work is related to the NMPC strategy ap-
plied to a DHN whose physics-based GRU equa-
tions are exploited. The last contribution re-
gards the lifelong learning issue: a novel method-
ological algorithm that deals with the problem
of model changes over time has been proposed.
Finally, the thesis is a starting point for many
possible developments. Above all, it would be
desirable to try out the physics-based machine
learning method proposed on other and differ-
ent types of system. In this way, a method-
ological generalization of the approach could be
eventually synthesized. Furthermore, it could
be convenient to implement a closed-loop ob-
server which exploits the PB-RNN equations in
the MPC problem formulation. Lastly, the life-
long learning topic is still an outstanding issue
and further investigation on the two strategies
proposed in the thesis is advisable.

References
[1] Fabio Bonassi, Marcello Farina, Jing Xie,

and Riccardo Scattolini. On recurrent neu-
ral networks for learning-based control: re-
cent results and ideas for future develop-
ments. Journal of Process Control, 114:92–
104, 2022.

[2] Anuj Karpatne, Ramakrishnan Kannan, and
Vipin Kumar. Knowledge Guided Machine
Learning: Accelerating Discovery using Sci-
entific Knowledge and Data. CRC Press,
2022.

[3] Richard Krug, Volker Mehrmann, and Mar-
tin Schmidt. Nonlinear optimization of dis-
trict heating networks. Optimization and
Engineering, 22(2):783–819, 2021.

[4] Lennart Ljung. System identification. In Sig-
nal analysis and prediction, pages 163–173.
Springer, 1998.

[5] German I Parisi, Ronald Kemker, Jose L
Part, Christopher Kanan, and Stefan
Wermter. Continual lifelong learning with
neural networks: A review. Neural networks,
113:54–71, 2019.

6

Physics-based Neural Network
modelling, Predictive Control
and Lifelong Learning applied
to District Heating Systems

Tesi di Laurea Magistrale in
Automation and Control Engineering -
Ingegneria dell’Automazione

Author: Laura Boca de Giuli

Student ID: 970053
Advisor: Prof. Riccardo Scattolini
Co-advisor: Prof. Alessio La Bella
Academic Year: 2021-22

To my family

iii

Abstract

A District Heating System (DHS) is an energy plant used to deliver heat through insulated
water pipelines (District Heating Network or DHN), both for residential and for commer-
cial purposes. This thermo-hydraulic system is particularly significant given that it is an
important tool to reach energy transition targets. In the state-of-the-art DHSs literature,
the vast majority of control strategies proposed are based on the physical model equa-
tions. This thesis, instead, aims at identifying a DHN model through a machine learning
technique, namely Recurrent Neural Networks (RNNs), which are particularly suitable
to identify the non-linearities of such a complex system. However, in order to exploit
both data-driven methods and physical knowledge, a Physics-based Machine Learning
approach is proposed. In particular, the key challenge of the thesis consists in develop-
ing a neural network that is capable of representing the physical interactions among the
main elements of the system under investigation. This objective is achieved by making
the Physics-based Recurrent Neural Network (PB-RNN) resemble the physical system
topology. Ultimately, PB-RNNs turn out to improve standard RNNs in several respects:
higher predictive accuracy, faster training procedure, greater interpretability and easier
problem detection. After the identification of a performing system model, the latter is ex-
ploited in a Non-linear Model Predictive Control strategy to optimize the district heating
system operation by minimizing its electrical cost. Finally, a lifelong learning algorithm
is presented in order to monitor the DHS in the long run. In detail, the algorithm is in-
tended to continually supervise the plant so as to detect potential anomalies. Depending
on the type of scenario tracked, which can mainly be a structural plant modification or an
operating conditions shift, a different solving strategy is proposed. The overall target is
to refine the existing system model by acquiring continuous information, while preventing
the new knowledge from significantly interfering with past data.

Keywords: Recurrent Neural Networks, Physics-based Machine Learning, District Heat-
ing Systems, Non-linear Model Predictive Control, Lifelong Learning.

Abstract in lingua italiana

Un sistema di teleriscaldamento è un impianto energetico utilizzato per distribuire calore
attraverso delle condotte d’acqua isolate (rete di teleriscaldamento), a fini sia residenziali
sia commerciali. Questo sistema termoidraulico è particolarmente significativo in quanto
strumento chiave per raggiungere alcuni obiettivi della transizione energetica. Nell’attuale
letteratura inerente ai sistemi di teleriscaldamento, la maggior parte delle strategie di con-
trollo proposte è basata sul modello fisico del sistema. Questa tesi, invece, ha come obi-
ettivo l’identificazione del modello di una rete di teleriscaldamento attraverso una tecnica
di machine learning, ovvero le Reti Neurali Ricorrenti (RNN), che sono particolarmente
indicate per identificare le non linearità di un sistema così complesso. Per sfruttare sia
metodi guidati dai dati che dalla conoscenza fisica, un approccio di Physics-based Machine
Learning viene in seguito proposto. In particolare, la sfida principale della tesi consiste
nello sviluppare una RNN capace di rappresentare le interazioni fisiche tra gli elementi
principali del sistema in analisi. L’obiettivo viene raggiunto facendo in modo che la Rete
Neurale Ricorrente basata sulla fisica (PB-RNN) ricalchi la topologia del sistema fisico.
In definitiva, queste PB-RNN risultano migliorare le reti tradizionali sotto diversi aspetti:
maggiore accuratezza predittiva e comprensibilità, procedura di training più veloce e rile-
vazione dei problemi più agevole. In seguito all’identificazione di un modello performante,
quest’ultimo viene impiegato all’interno di una strategia di controllo predittivo non lin-
eare per ottimizzare il funzionamento del sistema di teleriscaldamento minimizzando il
suo costo elettrico. Viene infine presentato un algoritmo ad apprendimento continuo per
monitorare il sistema sul lungo periodo. Nel dettaglio, l’algoritmo è volto a supervision-
are l’impianto in maniera continua così da individuare potenziali anomalie. In base al
tipo di scenario rilevato, che può consistere principalmente in una modifica strutturale
dell’impianto o in un cambio delle condizioni operative, viene proposta una diversa strate-
gia risolutiva. Il target globale è quello di affinare il modello esistente attraverso una
continua acquisizione di informazioni, evitando tuttavia che queste ultime interferiscano
in maniera rilevante con i dati precedenti.

Parole chiave: Reti Neurali Ricorrenti, Physics-based Machine Learning, Sistemi di
teleriscaldamento, Controllo predittivo non lineare, Apprendimento continuo.

vii

Contents

Abstract iii

Abstract in lingua italiana v

Contents vii

Introduction 1

1 Modelling and Simulation of a District Heating System 9
1.1 Chapter Overview . 9
1.2 Simulation Environment . 9
1.3 Network Components Description . 10

1.3.1 Gas Boiler . 10
1.3.2 Pressure Pump . 12
1.3.3 Expansion Vessel . 12
1.3.4 Pipes . 13
1.3.5 Thermal Loads . 14

1.4 Case study: the AROMA network . 15
1.5 Daily Simulation . 18
1.6 Conclusions . 21

2 Model Identification 23
2.1 Chapter Overview . 23
2.2 Identification . 23

2.2.1 Data . 23
2.2.2 Candidate Models . 28
2.2.3 Assessment Rule . 28

2.3 Prediction and Simulation . 29
2.4 State-Space and Polynomial Models . 30

viii | Contents

2.4.1 State-Space Models . 30
2.4.2 Polynomial Models . 31

2.4.2.1 Autoregressive with External Input Models 31
2.4.2.2 Output-Error Models . 31

2.4.3 Models Comparison . 32
2.5 Recurrent Neural Networks . 33

2.5.1 Long Short-Term Memory . 34
2.5.2 Gated Recurrent Unit . 35
2.5.3 Python Implementation . 35

2.5.3.1 Hyperparameters . 36
2.5.3.2 Training Method . 37
2.5.3.3 Results Comparison . 38

2.5.4 ARX and GRU Comparison . 41
2.5.5 Identification of a Daily DHS Operation 42

2.6 Conclusions . 44

3 Physics-based Recurrent Neural Networks 45
3.1 Chapter Overview . 45
3.2 Physics-based Machine Learning . 45

3.2.1 Motivations and Objectives . 45
3.2.2 Categorization of PB-ML . 46

3.3 PB-RNN Implementation for a DHN . 48
3.3.1 Constrained Loss Function . 48
3.3.2 A Novel RNN Architecture . 51

3.3.2.1 Input Choice . 52
3.3.2.2 Return Network . 56
3.3.2.3 Overall PB-RNN with Graph Theory 57

3.4 Results Comparison . 62
3.5 PB-ML Improvements over Traditional RNNs 66
3.6 Generalization of the PB-RNN Approach 66
3.7 PB-GRU Sensitivity Analysis . 67
3.8 Conclusions . 73

4 Model Predictive Control using Physics-based Neural Networks 75
4.1 Chapter Overview . 75
4.2 Model Predictive Control . 75
4.3 Non-linear MPC for a DHS using PB-RNNs 76

4.3.1 Optimization Environment . 77

| Contents ix

4.3.2 Problem Statement . 77
4.3.3 Disturbance Forecasting . 78
4.3.4 Constraints . 80
4.3.5 Cost Function . 82
4.3.6 Computational Effort Reduction . 83

4.3.6.1 Initialization . 84
4.3.6.2 Parameters Settings . 84
4.3.6.3 Blocking Strategy . 87

4.3.7 State Observer . 88
4.4 Optimization Results . 88
4.5 Conclusions . 91

5 Lifelong Learning 93
5.1 Chapter Overview . 93
5.2 Lifelong Learning Overview . 93

5.2.1 Motivations and Objectives . 94
5.2.2 Plasticity and Lifelong Learning in Literature 94

5.3 A Lifelong Learning Algorithm for the Supervision of a DHS 96
5.3.1 General Algorithm Description . 97
5.3.2 Plant Change Scenario . 103

5.3.2.1 Moving Horizon Estimation 106
5.3.2.2 Results . 108

5.3.3 Operating Conditions Change Scenario 112
5.3.3.1 Model Uncertainty Identification 113
5.3.3.2 Results . 115

5.4 Long-term Monitoring . 120
5.5 Conclusions . 121

Conclusions and Future Developments 123

Bibliography 125

List of Figures 135

List of Tables 139

List of Parameters 141

List of Variables 143

List of Acronyms 145

Acknowledgments 147

1

Introduction

Motivations

This past year has been a particularly tough period in several respects: to name one,
surging energy prices have harshly hit Europe. The primary cause of the crisis is a re-
bound from an economic slowdown during the COVID-19 pandemic. Russia’s invasion of
Ukraine in February 2022 worsened the situation. Both European sanctions and Russian
retaliation crimped supplies of Russian natural gas, which powers electric generators and
heats buildings, pushing continental European gas prices to more than 10 times their
average historical values1. This crisis remarked the importance of energy sources diver-
sification, also useful to speed up energy transition. Such turnaround is indeed crucial
to cope with another complex and well-established issue of nowadays, i.e. the alarming
continuous growth of CO2 emissions (Figure 1).

Figure 1: CO2 emissions by region.

1www.science.org

2 | Introduction

Fortunately, the European Union is among the leading major economies when it comes
to tackling greenhouse gas (GHG) emissions. By 2019, it had cut GHG emissions by 24%
compared to 1990 levels. In order to put the EU on a balanced pathway towards carbon
neutrality by 2050 (in line with the Paris Agreement), in April 2021 the Commission
agreed to raise the climate ambition of the GHG emission reduction target from 40% to
55% by 2030 compared to 1990 levels2.

The path to reach these objectives is demanding and cost-intensive, but more and more
solutions are now at our disposal. To mention a few, the usage of renewable and nuclear
energy, the electrification and sharing of transportation and the efficiency improvement of
private and industrial buildings. For instance, a recognized solution is to enhance urban
district heating, increasing it from the actual value of 20% to around 50% of the total
heat demand in Europe [45].
Due to all these reasons, this thesis aims at modelling, controlling and monitoring a
district heating system via groundbreaking techniques.

District Heating Systems

A District Heating System (also known as teleheating and abbreviated to DHS) is a
network used to distribute the heat generated in a centralized location (heating station)
through insulated water pipelines (District Heating Network or DHN), both for residential
and commercial requirements, such as space and water heating. District heating systems
exploit various energy sources, sometimes indirectly through multipurpose infrastructure
such as combined heat and power plants (CHP)3.

At the EU level, District Heating and Cooling (DHC) with CHP production are pointed
out as “important tools” to reach energy transition targets. The International Energy
Agency also claims the DHC system as a leading technology in a future (2050) where a
projected 6.3 billion people worldwide will live in cities [42].
District heating systems, in fact, highly contribute to primary energy savings as well as
emission and air-pollution reductions in urban areas [29, 69], mainly through the use of
high efficiency plants able to combine electricity and heat production, renewable energy
sources [51] and waste heat recovering from industrial processes [23, 80]. In addition, along
with a reduction in the maintenance and safety expenses [81], DHSs are also capable of
providing flexibility by balancing supply and demand through Thermal Energy Storage
(TES) systems [54].

2www.europarl.europa.eu
3www.wikipedia.org

| Introduction 3

Despite the aforementioned benefits of a DHS, its market share around the world is still
confined: the predominant reason for neglecting such systems is the lack of suitable tools
to design, analyse, and optimize them [81]. Because of that, this thesis seeks to develop
identification and control methods applied to such a powerful and worthwhile system.

Generally speaking, a DHS consists of four main parts [43] (Figure 2):

• a forward-flow part, which provides hot water to consumers (the supply network);

• consumers, that use hot water for heating;

• a backward-flow part, which transports the cooled water back to the heating station
(the return network);

• and the heating station, where the warming of the cooled water takes place.

Supply Network

Return Network

Heating Station

User

User

Figure 2: A schematic example of a district heating system [44].

A remark regarding nomenclature: generally speaking, a "district heating system" is
referred to as the comprehensive plant composed of pipelines, generators, consumers plus
other components such as storages, pumps and vessels. By contrast, for "district heating
network" (DHN) the water pipelines network connecting thermal loads is typically meant.
Therefore, we may say that in this thesis we are going to control a district heating system
whose DHN model has been identified through different techniques.

4 | Introduction

Recurrent Neural Networks and Physics-based Ma-

chine Learning

Traditionally, DHSs, due to their modelling complexity, are not optimized for control
purposes, but rather their supply temperature is kept constant. However, many efforts
have been recently made in order to control district heating systems through standard
model-based techniques, which involve the design and tuning of a control system based
on the knowledge of the physical model (white-box methods). In particular, DHSs require
advanced management and control schemes to be efficiently and optimally operated, con-
sidering various factors such as production costs, heat losses and environmental impacts
[45]. Actually, the mathematical equations describing such systems are complex, highly
non-linear (water transport delays are non-linear functions of the water flow [45]) and, due
to the uncertainties of such a wide network, the resulting model is frequently inaccurate.

This is where the need to exploit some advanced data-driven techniques such as Neural
Networks (black-box methods), with a complexity suitable for control, is born. The
just mentioned approach is related to supervised Machine Learning (ML) methods where
measurements of input and output variables of a process are collected, and then used to
mathematically describe the system [27, 35]. In recent years Neural Networks (NNs) have
spread as a powerful tool in several fields of science and engineering [9, 47], such as time
series forecasting [4] and system diagnosis [25]. The reason behind this rising interest lies
in the many potential advantages of black-box methods over traditional algorithms that
require a physical knowledge of the plant, including the possibility to reduce the time
and cost associated with model design, tuning, and adaptation to new plant operating
conditions [11].

In detail, a Recurrent Neural Network (RNN) is a special type of artificial neural network
particularly suitable to process time series data. They are in fact able to model long-
term temporal dependencies between subsequent data samples by introducing a hidden
state and by modelling the information flow into and out of the hidden state using the
so-called gates [73]. The fundamental feature of an RNN is that it contains at least
one feedback connection: in this way, the activations can flow round in a loop enabling
temporal processing and sequences learning [13].

On the other hand, purely black-box methods may lack of physical interpretability and
consistency and they typically require a huge amount of data to yield reliable results.
As a consequence, there is a growing interest in the scientific community to integrate
physical knowledge in machine learning frameworks in order to deliver generalizable and

| Introduction 5

scientifically consistent solutions even in the scarcity of representative data [39]. The goal
of the Physics-based Machine Learning (PB-ML) approach is to combine the benefits of
model-based and data-driven methods, and therefore to merge scientific knowledge with
machine learning techniques (see Figure 3).

Typically, leveraging physical knowledge of the system generates a model which is not
only more reliable, but also less prone to over-fitting. In addition, this can be achieved
with a significantly faster convergence of the training procedure [11].

P
h

ys
ic

al
m

o
d

el
-b

as
ed

m
et

h
o

d
s

Data-driven methods

Physics-based
machine learning

methods

U
se

 o
f

sc
ie

n
ti

fi
c

kn
o

w
le

d
ge

Use of data
High

High

Low

Low

Figure 3: A schematic description of physics-informed machine learning use of scientific
knowledge and data with respect to standard methods [39].

Model Predictive Control

Once a plant model has been identified, a further key step consists in the optimization
and control of the system under discussion, given that every thermal network requires
online monitoring and feedback control.
One of the most effective control techniques is the notorious Model Predictive Control
(MPC), i.e. an advanced strategy for optimizing the performance of multivariable control
systems. In a nutshell, MPC produces control actions by optimizing a cost function
repeatedly over a finite moving prediction horizon, based on the dynamic model of the
system to be controlled, while fulfilling physical constraints. First implementations of
MPC can be traced back to the late seventies. Since then, MPC research and development
have grown significantly in both industries and academia [91].

6 | Introduction

Indeed, MPC requires a reasonably accurate model that captures the dynamics of the
plant under control, so as to predict the optimization variables behaviour multiple steps
ahead [89].
Different system models can be embedded in the design of model predictive control, rang-
ing from highly detailed or simplified physical equations to data-driven solutions.
In particular, a key issue for an MPC implementation lies in the related online optimiza-
tion: its success depends on the effectiveness and efficiency of the solution method used.
For instance, neurodynamic optimization leveraging recurrent neural networks emerged
in scientific literature as a very promising approach [91]. Interesting examples of MPC
exploiting RNNs can be found in different fields, such as pharmaceutical manufacturing
[89] or flight engineering [93].
However, district heating systems are usually controlled through MPC regulators relying
on purely physics-based models [24, 67, 70, 86, 88], whereas, to the best of the author’s
knowledge, never through MPC based on physics-informed machine learning methods.

Lifelong Learning

After a system model is obtained and control tuning is performed, another key issue arises.
In real life, in fact, processes change during time because of external (e.g. disturbances
and new implemented technologies) and internal factors (e.g. wear and fouling in the
equipment). As a consequence, the machine learning model that has been trained using
the information from past normal operations may no longer be able to correctly predict
actual process states [90]. Hence, in many practical applications it is required to adapt
the model when new information is available and/or the system undergoes changes [12].

A key aspect of human intelligence is the ability, namely lifelong learning, to continually
adapt and learn in dynamic environments [83]. By mimicking nature, we may extend this
idea to machine learning. Actually, this represents a long-standing challenge for neural
network systems, due to the tendency of learning models to catastrophically forget existing
knowledge when acquiring new data. Specifically, a lifelong learning system is defined as
an adaptive algorithm capable of learning from a continuous stream of information, with
such knowledge becoming progressively available over time and where the number of tasks
to be learned is not predefined. Critically, the accommodation of new information should
occur without catastrophic forgetting or interference [63].

| Introduction 7

Thesis Contributions

By pursuing the state-of-the-art literature achievements, this thesis aims at giving a con-
tribution under four main respects.

The first objective is the modelling of a district heating network by means of black-box
identification techniques, and in particular through recurrent neural networks. To the
best of the author’s knowledge, in fact, this type of thermo-hydraulic systems is typically
monitored and controlled via physics-based (white-box) methods.

However, the main challenge of the work consists in developing and implementing a recur-
rent neural network whose structure is not "blind" but rather oriented by the physics of
the actual system. To this end, the interconnections among the RNN layers are intended
to replicate the physical network architecture and modularity. The desired goal of such
physics-based machine learning approach is to reach greater identification performance
with respect to standard RNNs, hopefully in a shorter amount of training time.

Furthermore, the thesis aims at devising a non-linear model predictive control strategy for
the DHS under discussion, by making use of the physics-based recurrent neural network
equations both in the finite horizon control optimization problem formulation and in the
state observer design.

The final contribution is related to the lifelong learning issue. In the long run, the district
heating system under investigation must be continually monitored and supervised: the
thesis proposes a novel algorithm to tackle the problem of model changes over time. In
particular, the target is to provide an effective solution depending on the category of
scenario detected.

Thesis Outline

The first chapter presents the modelling of a district heating system, along with a brief
description of its major elements and of the simulation environments employed. Finally,
a typical daily operation of the network under consideration is discussed.

The second chapter aims at giving a first insight on the model identification topic.
An overview on some state-space and polynomial models, along with their performance,
is then provided. Similarly, two types of recurrent neural networks, together with their
implementation and predictive results, are explored. Finally, a typical working day of the
DHS is simulated by means of the most successful identification technique spotted up to
that point.

8 | Introduction

The third chapter, in addition to a short literature review on physics-based machine
learning, seeks to underline the advantages of this novel approach over traditional data-
driven and model-based methods. Moreover, two strategies applied to the case study
under investigation are deepened. In particular, the rationale behind the second one,
which turns out to be the most effective, and its implementation, i.e. a recurrent neural
network that resembles the structure of the physical system, are thoroughly described.
Finally, the results of this innovative technique are compared to the standard ones and a
sensitivity analysis is carried out.

The fourth chapter focuses on the implementation of an optimization and control
algorithm, namely model predictive control. After a general introduction and the problem
statement, the main elements required to solve the finite horizon control optimization
problem are investigated: cost function, constraints, disturbance forecasting and state
observer. Finally, the results of the aforementioned problem are reported, together with
a comparison between two MPC regulators that make use of different plant models.

The fifth chapter involves a general description of lifelong learning, complemented by
its motivations, objectives and a brief literature review on the topic. Subsequently, a
general supervision algorithm for the monitoring of a district heating system is proposed.
In particular, the strategy articulates in two parts, depending on the category of anomaly
detected. For each scenario, the corresponding solving algorithm and identification results
are finally reported.

The final chapter summarizes the main conclusions and achievements of the thesis.
Moreover, although the results accomplished are rewarding, the work is nonetheless a
starting point for many possible reflections and future developments, which are lastly
discussed.

9

1| Modelling and Simulation of a

District Heating System

1.1. Chapter Overview

The main goal of this chapter is to present the modelling of a District Heating System
(DHS) and to describe its main components. In particular, a case study will be discussed
(the AROMA network [43]), both in this and in subsequent chapters. Then, for identi-
fication and control purposes it is indeed necessary a suitable simulation environment in
which a model able to capture the main dynamics of the physical system is developed.
Actually, the data used in this thesis for identification scopes are not collected from a real
operating system, but rather they are obtained through an accurate simulation which is
here discussed. Finally, a realistic example of a daily operation will be shown.

1.2. Simulation Environment

The choice of a proper simulation environment is the first crucial step of this thesis. In
very few words, it is useful to exploit a software which, given certain system inputs, such
as temperature and power references, is capable of simulating the process dynamics easily
and quickly.

The system taken into account is a thermal one and hence the object-oriented Modelica
language is suitable to describe a district heating system. The Modelica Association is
a non-profit organization which develops coordinated, open access standards and open
source software in the area of cyber physical systems1. The Association also develops the
free Modelica Standard Library, but for this thesis objectives another library is exploited:
the DHN4Control developed by the Systems and Control Group of Politecnico di Milano.

Second, after the system model is implemented, it is exported from the OpenModelica
Connection Editor as an FMU file and imported in Simulink for control purposes. The

1https://modelica.org

10 1| Modelling and Simulation of a District Heating System

latter is a block diagram environment for multidomain simulation and Model-Based Design
integrated in MATLAB2.

The reason why two simulation environments are simultaneously employed is quite straight-
forward. The Modelica language fits perfectly the need of describing a complex thermo-
hydraulic system, whereas Simulink and MATLAB are more appropriate for identification
and control purposes.

1.3. Network Components Description

In this section, the main elements composing a district heating system are concisely pre-
sented. Besides, the well-known mass, momentum and energy balance equations that
govern the various components are not here entirely developed for the sake of conciseness,
but they are thoroughly described in [43, 61]. Finally, the parameters and variables sym-
bols mentioned in this chapter are listed, together with their meaning and International
System (SI) unit, in Table 5.7 and 5.8.

1.3.1. Gas Boiler

In short, the gas boiler is a heater which provides heat to the network flowing water,
i.e. it sets the desired supply temperature. Even though in recent years its thermal
efficiency has significantly enhanced [66], it may not be always the best solution due to its
emissions and human health-related problems [33, 48]. However, for this thesis purposes,
simple and widely used solutions such as traditional gas boilers are entirely appropriate:
they are particularly flexible and easy to control [61], which is a sufficiently fair reason to
choose them.

The general idea behind a gas boiler is to transfer the chemical power stored inside natural
gas into water, so that its temperature increases or a phase change occurs [22, 61].
The Modelica gas boiler block is reported in Figure 1.1.

in out

Figure 1.1: The gas boiler representation in the DHN4Control Modelica library.

2https://it.mathworks.com

1| Modelling and Simulation of a District Heating System 11

As it can be noticed, the block has one input (depicted as a blue triangle), i.e. the reference
temperature, which is the value the water inside the boiler must reach. In particular, this
is achieved through a Proportional-Integral-Derivative (PID) with anti-windup controller,
by measuring the temperature via a sensor placed in the output flow of the heater and
by giving this quantity in feedback to the PID regulator.
Additionally, the power exiting from the regulator as control action is regularly monitored.
It is worth recalling that it is constrained between a minimum and a maximum value (1.1),
and it must always satisfy the consumers request.

P boiler
min ≤ P boiler ≤ P boiler

max (1.1)

In addition, many library components are characterized, as in Figure 1.1, by a flow inlet
port (grey circle on the left-hand side) and an outlet one (grey ring on the right-hand
side).

Second, it is useful to demonstrate how the integral time (T PID
i) of the controller is

computed. Actually, the water volume (V) dynamics inside the boiler is not negligible
and in order to have an almost first order response of the controlled system it is convenient
to cancel that slow and disturbing dynamics out through a careful choice of T PID

i . By
simply exploiting an energy balance (1.2), it is possible to derive the perfectly mixed
volume time constant.

Mwcp
dTw

dt
= ṁwcp(Tin − Tout)−Qamb (1.2)

In this case, the thermal conductance that characterizes the heat exchange with the
external environment (Qamb) can be considered zero, by fairly assuming that the boiler
is well insulated. As a consequence, the water volume dominant time constant is readily
found in (1.3) and it can be directly used as integral time of the PID controller.

τ =
∆Tw

Ṫw

=
ρV

ṁw

(1.3)

Finally, the proportional gain (kPID) of the regulator is chosen so that the settling time
of the outlet temperature is roughly one minute and a half [78] and neither overshoots
nor oscillations occur. The complete set of equations governing the boiler dynamics is
reported in [61].

12 1| Modelling and Simulation of a District Heating System

1.3.2. Pressure Pump

The pump is a fundamental element used to impose a constant differential pressure be-
tween its inlet and outlet port without losses and at any mass flow rate. This feature
is particularly helpful in heating applications, since thermal loads absorb an unknown
amount of water in order to meet their power demands and to maintain a fixed return
temperature [61].

Specifically, considering the typical power consumption profiles and mass flow rates, the
value of ppump reported in Table 5.7 is required. Moreover, in (1.4) the equations governing
the pump dynamics are shown [61].





ppump
out − ppump

in = ∆ppump

T pump
in = T pump

out

ṁpump
in + ṁpump

out = 0

(1.4)

Lastly, in Figure 1.2 the DHN4Control block representing the pressure pump is displayed.

in out

Figure 1.2: The differential pressure pump in the DHN4Control Modelica library.

1.3.3. Expansion Vessel

The expansion vessel (or accumulator) is an important part of any water heating system.
Briefly, it is a pressure storage tank that imposes a certain pvess in the backward-flow part
of the DHS, avoiding fluctuations [61]. In other words, the pressure accumulator absorbs
volume variations of the fluid caused by temperature changes and prevents cavitation in
circulation pumps [77].

Besides, it is possible to assume a perfect insulation and negligible friction, and therefore
the temperature of the volume inside the tank is equal to the return water temperature
[61], i.e. T r. As visible in Figure 1.3, the tank has a unique port which is connected to
the backward-flow part only, and it imposes to the latter the pressure value pvess reported
in Table 5.7.

1| Modelling and Simulation of a District Heating System 13

in/out

Figure 1.3: The expansion vessel in the DHN4Control Modelica library.

Ultimately, since the expansion tank fixes the return pressure to a desired value, all
pressures in the network are potentially known at any time [61]. As a consequence, it is
possible to neglect the pressure dynamics and to focus on the temperature and mass flow
rate ones.

1.3.4. Pipes

Water is delivered to users through a pipeline network (from which derives District Heating
Network or DHN) that is modelled so that the metal thermal inertia, friction, flow reversal
and pressure losses are taken into account: pipes are in fact the elements that introduce
transport delay effects on temperature profiles [61].

In detail, it is possible to describe the physics of hot water flow in pipelines through 1D
Euler equations. The thermal energy equation for each jth pipe is given by (1.5) [43].

∂T pipe
j

∂t
(x, t) + upipe

j (t)
∂T pipe

j

∂x
(x, t) +

4Upipe
j

cpρ
pipe
j (x, t)Dpipe

j

(T pipe
j (x, t)− Text) = 0 (1.5)

Moreover, the model of each pipe can be discretised in sections to get rid of space deriva-
tives [61, 65] (finite volume method, see Figure 1.4). In particular, since modelling com-
plexity is out of this thesis scope, for the sake of simplicity only two sections per pipe are
considered.

Inlet
flow

Outlet
flow

1𝑠𝑡 𝑛𝑡ℎ𝑖𝑡ℎ

Figure 1.4: Finite volume method: discretisation of a pipe with n sections.

Overall, in the AROMA network there are nine pipes along the forward-flow part and

14 1| Modelling and Simulation of a District Heating System

nine along the backward-flow part: each of them has its own internal diameter and length
according to [43].

For a better description of reality, a pipe insulation thickness dins and a thermal conduc-
tivity σins are considered (Table 5.7). In particular, a thick pipelines insulation allows
to mitigate the losses. In addition, the thermal conductance which describes the heat
exchange between each pipe and the external environment can be found as in (1.6).

UApipe
j =

Lpipe
j (2πσins)

log
Dpipe

j /2+dwall+dins

Dpipe
j /2+dwall

(1.6)

Finally, according to the Reynolds number (Re) [61], the Fanning friction coefficient (f)
is constant, as well as the nominal fluid velocity (unom).

in out

Figure 1.5: A generic pipe in the DHN4Control Modelica library.

1.3.5. Thermal Loads

The AROMA network involves five users that consume water for heating purposes. Ac-
tually, each consumer is an aggregation of loads that could be houses, industrial facilities
or commercial buildings [61]. Each load is modelled as reported in Figure 1.6, where the
valve temperature reference and the load consumption are the inputs, whereas the supply
and return temperature and the mass flow rate are the outputs (internally visible).

in out

Figure 1.6: A generic consumer in the DHN4Control Modelica library.

Typically, the load powers can range from P load
min to P load

max, whereas Tref is kept steady at
the cold temperature of 65◦C through a mere valve proportional controller, as visible in

1| Modelling and Simulation of a District Heating System 15

Figure 1.7. The Modelica scheme shows also the temperature sensor block, depicted as a
thermometer. Moreover, one can notice that the valve connects the user in series to the
main flow line [61].

Figure 1.7: Valve proportional controller implemented in Modelica.

The valve is reasonably assumed to be linear, with constant pressure recovery coefficient,
and it is necessary to regulate the mass flow rate: a key quantity is indeed its flow
coefficient. In depth, the flow factor (Kv) is the metric system equivalent of the flow
coefficient (Cv), and it is defined as the flow of water in cubic meters per hour ([m3/h])
at a pressure drop of 1 bar with the temperature ranging from 5 to 30◦C. It describes the
relationship between the pressure drop across a valve and the corresponding flow rate3.
Moreover, a minimum opening area of the valve (θmin) is imposed in order to avoid no
flow condition. Clearly, the pressure drop between the supply and the return part is the
one imposed by the differential pump.
To sum up, the users demand regulates the overall mass flow rate of the network, whose
relationship is given in (1.7) [45].

P load
i (t) = cpṁi(t)(T

s
i (t)− T r

i (t)) (1.7)

1.4. Case study: the AROMA network

Now that the main elements composing a DHS have been described, a case study which
includes all of them can be introduced. In fact, as explained in the Introduction, in this
thesis all the experiments are carried out on a specific district heating system: a referenced
DHN named AROMA network is implemented [43]. The main physical aspects of water
and heat flow in such a network are governed by non-linear and hyperbolic 1D partial
differential equations, thoroughly explained in [43].

3www.wikipedia.com

16 1| Modelling and Simulation of a District Heating System

The topology of the AROMA network is rather simple: it is composed of 18 nodes, 24 arcs
(1 heating station, 5 consumers, and 18 pipes), and one cycle each in the forward-flow and
in the backward-flow network. Overall, its total pipe length is 7262.4 m. In Figure 1.8 a
schematic representation highlighting the nodes and the thermal loads is displayed.

Figure 1.8: AROMA network schematic representation: forward-flow arcs are plotted in
solid red, backward-flow arcs in dashed blue, users in green and the heating station in
dotted yellow. Nodes in the forward part are referred to as Fi, in the return part as Ri.

Lastly, by assembling in Modelica all the components illustrated in Section 1.3 through
connections that link outlet and inlet ports, the overall AROMA network is thus obtained
(Figure 1.9). The loads numbering reported in the diagram is crucial and it will be used
hereinafter to mention the various users. In particular, differently from the notation of
[43], we number the consumers according to their distance with respect to the heating
station: the first user is the closest, the fifth (last) is the furthest.

1| Modelling and Simulation of a District Heating System 17

Figure 1.9: The complete AROMA network implemented in Modelica.

18 1| Modelling and Simulation of a District Heating System

In depth, all the consumers’ valve controllers have the same temperature reference, whereas
the load profile inputs are separated as different users typically have different power re-
quests. Moreover, for a better manageability, the outputs are collected into vectors.
Ultimately, temperature, mass flow rate and pressure sensors are placed in key points of
the network to regularly monitor its status.

1.5. Daily Simulation

In this section, a typical operating day of the AROMA network is discussed. The data
used for the simulation are the ones of a real district heating system located in Novate
Milanese [45].

In detail, the system is fed with six inputs: the boiler reference temperature and the
thermal loads consumptions. First, T boiler

ref is the one obtained through the resolution of
a dynamic optimization problem analysed in [61]. Then, the consumers powers reported
in [45] are actually adapted to the AROMA network case according to the proper power
range (P load

min − P load
max) and to the weights reported in Table 1.1 [43].

Consumer Weight

Load 1 0.11

Load 2 0.38

Load 3 0.34

Load 4 0.09

Load 5 0.08

Table 1.1: Weights of the AROMA network describing how the overall power request is
partitioned among the five consumers.

Ultimately, the so formed input signals are shown in Figure 1.10.

1| Modelling and Simulation of a District Heating System 19

0 4 8 12 16 20 24

65

70

75

80

85

90

95

(a) Boiler temperature.

0 4 8 12 16 20 24

50

100

150

200

250

300

350

400

(b) Load profiles: in blue the first user’s power, in purple the second’s, in red the third’s, in green
the fourth’s and in yellow the fifth’s.

Figure 1.10: Daily simulation inputs.

It is worth noticing that the upwards peak in the load profiles and the downwards peak in
the boiler reference temperature in the early morning hours are due to an obvious larger
use of hot water by consumers with respect, for instance, to the night-time. Besides,
the initial (night-time) high value of T boiler

ref is intuitive and correctly computed by the
optimization algorithm: in this way the network is prepared to tackle the morning demand
peak.

Second, once the input quantities are defined, it is possible to run a daily simulation,
whose results are shown in Figure 1.11. In depth, the output quantities of major interest

20 1| Modelling and Simulation of a District Heating System

are the following: the five users supply temperatures and return mass flow rates, as well
as the overall return temperature and mass flow rate at the central station.

0 4 8 12 16 20 24

55

60

65

70

75

80

85

90

(a) Users supply temperatures and overall return temperature.

0 4 8 12 16 20 24

0

2

4

6

8

10

12

14

16

18

20

(b) Users return mass flow rates and overall return mass flow rate.

Figure 1.11: Main AROMA network outputs in a daily simulation: in blue the first user’s
variables, in purple the second’s, in red the third’s, in green the fourth’s, in yellow the
fifth’s and in light-blue the return variables.

The first thing one notices is that, correctly, the return temperature, which ranges from
55◦C to 65◦C, is always smaller than the supply one, due to the DHS structure previously
mentioned: the heating station provides hot water to the network, meanwhile the users
give back cold water.

1| Modelling and Simulation of a District Heating System 21

As expected, the load supply temperatures have a trend similar to the boiler reference.
Actually, the farther the consumer is, the bigger the pressure and friction losses are and
consequently the temperature profile is more distant from the reference one. For instance,
if a simple step is given as reference to the boiler temperature (e.g. from 80 to 90◦C, see
the beginning of Figure 1.11a), the closest consumer has to wait roughly two hours to get
the water settled at the steady-state value (90◦C). By contrast, the furthest user must
wait almost twice as long to not even get the requested temperature (in the same example
T s
5 will settle at 87◦C). This should not come as a surprise, as complex thermo-hydraulic

systems such as the AROMA network have very slow transients [52], and these results
confirm that the model developed in this first chapter resembles pretty well the reality.
Clearly, it could be possible to speed up a little the system dynamics by increasing the
mass flow rate (achieved by raising the requested power). However, this specific network
operates successfully as long as the power constraints are not violated, as in the daily sim-
ulation example, thus the total amount of power that it can be handled is approximately
2 MW.

In conclusion, as visible in Figure 1.11, ṁr never exceeds 20 kg/s, and the single mass
flow rates of the loads are coherent with that value (always smaller). Furthermore, these
quantities follow the load profiles evolution: the higher is the power requested by con-
sumers, the greater is the mass flow rate, and hence the faster is the overall system to
reach the reference.
Moreover, the boiler power (not shown here for the sake of space) never exceeds its sat-
uration limits (P boiler

min and P boiler
max), and therefore the network operation is smooth and

safe.

1.6. Conclusions

In this chapter it has been proposed a simulation environment where to carry out various
experiments on the referenced district heating network named AROMA. In particular,
since the state-of-the-art district heating systems are already modelled through classical
white-box techniques, a general and concise description regarding the fundamental sys-
tem components, together with their governing non-linear equations, has been provided.
Finally, a daily simulation of the system has been reported so as to clearly show the dy-
namics of the main variables that will be subsequently identified. Ultimately, the current
chapter covered the fundamental physical aspects of the energy system under discussion,
necessary to understand the succeeding chapters analysis.

23

2| Model Identification

2.1. Chapter Overview

In this chapter it is first convenient to address some basic notions of model identifica-
tion. Afterwards, two solving approaches are analysed: one exploits polynomial modelling
techniques, the other employs neural networks. Finally, a comparison among the various
methods is presented, together with a realistic data-based identification example.

2.2. Identification

As stated in the Introduction, for complex large-scale processes with countless phenomena
occurring simultaneously, an accurate physics-based dynamic model may be impossible to
develop [53]. Consequently, the goal of this chapter is to describe the AROMA network
not through highly non-linear and often insufficient physical equations, but thanks to
some data-driven identification techniques. In particular, the latter deal with the prob-
lem of building mathematical models of dynamical systems based on observed data from
the system itself [49].
It is worth recalling that the system under analysis will be fed with some inputs (manip-
ulated signals) plus some external disturbances and it will produce outputs (observable
signals), that are exactly what identification aims to get. In conclusion, the procedure to
follow is quite straightforward: input and output signals from the system are collected
and processed by a data analysis technique in order to infer a model [49].

2.2.1. Data

First, it is necessary to establish which system inputs and outputs are of major interest.
As introduced in Chapter 1, the AROMA network is currently excited with six inputs:
the boiler temperature, i.e. the desired supply temperature value, and the five powers
requested by the corresponding consumers.
Second, the outputs that must be identified (and subsequently exploited in control schemes)

24 2| Model Identification

are the supply temperatures of the five users and the overall return mass flow rate and
temperature.

The experiment design requires a careful study and selection. In fact, in order to properly
excite the system, the inputs must vary within significant ranges while never violating
their limits. This is why pseudorandom binary sequences (PRBS) made of steps varying
both the amplitude and the interval time size are given as input to the system. In detail,
all the signals are randomly generated with some constraints:

• the boiler reference temperature can vary its amplitude from 62◦C to 96◦C;

• the consumers power can vary its amplitude from 30kW to 420kW;

• each consumers power is additionally divided into five subsequences (see Figure 2.2b),
so that it varies not only in the whole magnitude range but also in three other
smaller ranges that are useful to better catch the system dynamics. Actually, this
is motivated by the typical power daily consumption (see Figure 1.10b), which is
characterized by low activity periods (e.g. night-time) and high activity periods
(e.g. early morning hours);

• some steps must allow all the variables to reach their steady-state values, and hence
the signal frequency is selected such that the slowest settling time (around three
hours of T r) is respected. Other steps instead can have a smaller time range;

• in order to attain a meaningful experiment, a huge number of data is collected, i.e.
a 10-day simulation is performed;

• a random White Gaussian Noise (WGN) is superimposed to the so-formed signals
in order to mimic real external disturbances and to test the identification methods
robustness. Specifically, T boiler

ref is characterized by a WGN of peak-to-peak ampli-
tude 0.15◦C, whereas P load

j is characterized by a WGN of peak-to-peak amplitude
1kW, see Figure 2.1;

• at first (Chapter 2 and 3), a sampling time of one minute is selected, so that the
collected data are maximally informative. The choice is made by considering the
fastest variable (T boiler

out), which has a settling time of roughly one minute and a
half. Subsequently, in Chapter 4 and 5, a sampling time of five minutes is employed
because of computational reasons.

2| Model Identification 25

(a) Boiler reference temperature with WGN.

(b) First load profile with WGN.

Figure 2.1: Example of noisy inputs.

Finally, in Figure 2.2 it is possible to appreciate the complete 10-day experiment: Fig-
ure 2.2a and 2.2b contain the inputs, whereas Figure 2.2c and 2.2d show the outputs.

In particular, these data will be used as training (and validation, in the case of RNNs)
sets, whereas the dataset displayed in Figure 2.3 will be used for testing. This splitting is
crucial for a performing identification: the training set is used to build the model, which
is then challenged with the validation set that contains unknown samples, and thus the
model accuracy is assessed [92]. Finally, the performance is evaluated on a new, never
seen before, dataset, i.e. the test set.

26 2| Model Identification

0 2000 4000 6000 8000 10000 12000

60

65

70

75

80

85

90

95

100

(a) Boiler reference temperature.

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

300

350

400

450

(b) Load profiles showing the five subsequences.

0 2000 4000 6000 8000 10000 12000

40

50

60

70

80

90

100

(c) Supply and return temperatures.

0 2000 4000 6000 8000 10000 12000

0

5

10

15

20

25

(d) Return mass flow rates.

Figure 2.2: Input and output variables of a 10-day simulation, used for training : in blue
the first user’s variables, in purple the second’s, in red the third’s, in green the fourth’s,
in yellow the fifth’s and in light-blue the return variables.

2| Model Identification 27

0 200 400 600 800 1000 1200

65

70

75

80

85

90

95

100

(a) Boiler reference temperature.

0 200 400 600 800 1000 1200

0

50

100

150

200

250

300

350

400

(b) Load profiles.

0 200 400 600 800 1000 1200

50

55

60

65

70

75

80

85

90

95

100

(c) Supply and return temperatures.

0 200 400 600 800 1000 1200

0

2

4

6

8

10

12

14

16

18

20

(d) Return mass flow rates.

Figure 2.3: Input and output variables of a daily simulation, used for testing : in blue the
first user’s variables, in purple the second’s, in red the third’s, in green the fourth’s, in
yellow the fifth’s and in light-blue the return variables.

28 2| Model Identification

Now few comments on these plots. First, as stated above, the constraints on the inputs
are satisfied and the outputs behaviour is coherent with the system dynamics.
Then, the return temperature is the slowest variable in terms of tracking speed, whereas
the supply temperatures of the first and second consumer are obviously the fastest (being
the closest to the heating station). Besides, the return mass flow rate follows appropriately
the load profiles evolution.
Finally, the first data of any simulation are always discarded (not visible in the plots), so
that the system is allowed to reach its initial equilibrium.

2.2.2. Candidate Models

In this chapter different candidate models are analysed. In particular, some black-box
techniques are implemented: a black-box model of a system does not use any particular
prior knowledge of the physical relationships involved, and therefore it is more a question
of "curve-fitting" than "modelling" [50].
First, three standard linear models are deepened and compared: State-Space (SS) and
polynomial models, i.e. AutoRegressive with eXternal input (ARX) and Output-Error
(OE) models.
Second, within deep learning framework, two kinds of Recurrent Neural Networks (RNNs)
are explored, namely Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), with the aim of improving the results obtained through the aforementioned clas-
sical identification methods.

2.2.3. Assessment Rule

In order to quantitatively evaluate the identification results, a performance index must
be computed. In particular, the Normalized Root Mean Square Error (NRMSE or FIT)
is determined so as to assess the models overall accuracy, by comparing the actual data
with the predicted ones:

FIT =

(
1− ||yreal − yid||2

||yreal − yavg||2

)
· 100 (2.1)

where, intuitively, yid is the vector of identified outputs, yreal the vector of the real ones
and yavg is its average [10].

In addition, in order to assess each output performance, a suitable index is the so-called

2| Model Identification 29

coefficient of determination, indicated as R2 and defined in (2.2).

R2 =

(
1−

∑T
i=1(yi,real − yi,id)

2

∑T
i=1(yi,real − yavg)2

)
· 100 (2.2)

2.3. Prediction and Simulation

A key distinction in the system identification world must now be addressed so as to select
the correct type of model, which must be related to the application is going to be used
for [49].
On the one hand, prediction means projecting the model response k steps ahead into
the future (prediction horizon) using the current and past values of measured inputs and
outputs. By calling the output y(t) and the input u(t), a dynamic system described by a
first-order differential equation

y(t+ 1) = ay(t) + bu(t) (2.3)

can be predicted as

yp(t+ 1) = aym(t) + bum(t) (2.4)

where, intuitively, subscript p stands for predicted and m stands for measured [1].

On the other hand, simulation means computing the model response using input data
and initial conditions. In other words, given inputs u(t1, .., tN), the simulation generates
ŷ(t1, .., tN), i.e.

ŷ(t+ 1) = aŷ(t) + bu(t) (2.5)

Actually, the most basic use of a system description is to simulate the system response to
various input scenarios [49]. To sum up, the main difference between the two methods is
that the one-step predictor depends on past measurements of y and u, i.e. the prediction
is based on the actual measured outputs and not on the past predicted outputs, as in
simulation. This implies that, in cases like ARX (see Section 2.4.2), a model with good
predictive performance is not necessarily a good simulation model [19]. As a result, in
order to identify models which reliably work in simulation, Output-Error models (see
Section 2.4.2) are needed [19]. Ultimately, for this thesis purposes, a simulation approach
is going to be used.

30 2| Model Identification

2.4. State-Space and Polynomial Models

In this section, state-space and polynomial models are explored. In particular, the sim-
ulation is performed through the MATLAB System Identification Toolbox, which pro-
vides MATLAB functions, Simulink blocks, and an app for dynamic system modelling,
time-series analysis, and forecasting. It is suitable to learn dynamic relationships among
measured variables in order to create transfer functions, process models, and state-space
models in either continuous or discrete time while using time- or frequency-domain data
[1].
The goal of presenting this type of models is to highlight not only their features and
benefits but also some limitations and drawbacks, especially when compared to other
techniques (Section 2.5). For instance, one would expect relatively poor performance
since this kind of models involves linear structures and hence a complex non-linear sys-
tem such as the AROMA network is likely to be poorly identified by them.
To learn more about these models, go through the source of this section [49].

2.4.1. State-Space Models

In the state-space form the relationship between the input, noise and output signals is
written as a system of first-order differential or difference equations (continuous or discrete
time) using the state vector x(t) [49]:

{
ẋ(t) = Ax(t) +Bu(t)

ẏ(t) = Cx(t) +Du(t)
(2.6)

When performing identification by means of the toolbox, a discrete-time model must
be selected in the structure options. Furthermore, the N4SID (Numerical algorithm for
Subspace State-Space System Identification) is chosen as estimation method and the focus
is set on simulation (not prediction).
Then, it is necessary to pay a particular attention regarding the model structure, i.e. the
model order (n) selection, which is not trivial. Actually, this is done with a trial and error
approach, having as guiding metrics the FIT value of the identification result and the
model zeros-poles plot: sometimes a high order is not necessary to describe the system, in
particular if many zeros and poles are almost overlapping. In conclusion, it is advisable
to start from a low order and then to increase it until the FIT value starts diminishing.

2| Model Identification 31

2.4.2. Polynomial Models

Polynomial models, which include FIR, ARX, ARMAX, ARMA, ARARX, ARARMAX,
OE and BJ models, are generally described by the equation reported in (2.7) [49].

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (2.7)

where e(t) is the error and A,B,C,D, F are the polynomials describing the system. Specif-
ically, the ARX and OE models will be considered in detail.

2.4.2.1. Autoregressive with External Input Models

The ARX model name stands for autoregressive with external input because it trivially
includes an input term. In a nutshell, the ARX structure contains only two polynomials
among those embedded in (2.7), A and B, i.e. it is given by the following equation:

A(q)y(t) = B(q)u(t− nk) + e(t) (2.8)

where nk is the number of input samples that occur before the input affects the output
(input-output delay), A(q) = 1+ a1q

−1+ ...+ anaq
−na , B(q) = b1+ b2q

−1+ ...+ bnb
q−nb+1,

na is the order of polynomial A(q) (number of poles) and nb is the order of B(q) + 1

(number of zeros) [1].

2.4.2.2. Output-Error Models

OE models are a special configuration of polynomial models, having only two active
polynomials: B and F . These models represent conventional transfer functions that
relate measured inputs to outputs while also including white noise as an additive output
disturbance. The system is represented by the following equation:

y(t) =
B(q)

F (q)
u(t− nk) + e(t) (2.9)

where the orders of the polynomials are [1]:

nb : B(q) = b1 + b2q
−1 + ...+ bnb

q−nb+1

nf : F (q) = 1 + f1q
−1 + ...+ fnf

q−nf

(2.10)

(2.11)

32 2| Model Identification

Again, for both polynomial models, in the toolbox options it is necessary to set the
focus on simulation, the domain on discrete-time and to carefully select the orders of the
polynomials, as explained in Section 2.4.1.

2.4.3. Models Comparison

At this point, it is appropriate to go over some identification results.

First, the experiment details are here reminded: the inputs are six, i.e. the boiler reference
temperature and the five load profiles, whereas only one output (T s

5) is considered, so as
to start with a simple identification example.
In the end, almost ten days of simulation are given to the toolbox as training data (Figure
2.2), and roughly one day of testing is used to validate the model (the initial data are
discarded for transient reasons), see Figure 2.3.

Second, the orders selected for the three models, using the aforementioned choice crite-
rion, are displayed in Table 2.1. Clearly, these orders are the ones that yield the best
performance of each model in terms of predictive accuracy. Finally, in Figure 2.4 it is
possible to observe the identification results of the fifth consumer’s supply temperature,
compared to the actual value (black line):

0 200 400 600 800 1000 1200

Time [min]

70

75

80

85

90

T
e

m
p

e
ra

tu
re

 [
°

C
]

Figure 2.4: Polynomial models best identification results: in black the ground truth, in
green the ARX model’s result, in blue the SS’ and in red the OE’s.

From a quick visual inspection, OE seems to have the worst performance, whereas ARX
and SS models show pretty similar trends. In order to quantitatively assess these results,
it is convenient to compute the FIT, as reported in Table 2.1.

2| Model Identification 33

Model Order FIT [%]

SS n = 3 34.6

ARX na = 9, nb = 9, nk = 1 60.8

OE nb = 1, nf = 1, nk = 1 30.4

Table 2.1: Polynomial models FIT comparison.

In conclusion, the best identification performance is obtained through an ARX model,
whereas the FIT values confirm the OE to be the poorest. However, generally speaking, all
the results are not very satisfactory and this leads us to exploit more complex identification
techniques (Section 2.5).

Actually, the variable T s
5 is one of the most critical to identify (together with T r and ṁr),

being the fifth user the furthest: many friction and pressure losses happen in the pipelines
before the consumer’s position. In fact, the same simulation procedure has been applied
to T s

1 too, whose results are definitely better.
Anyway, the choice to show T s

5 results is made on purpose in order to underline the
poor performance of these models, especially when compared to the neural networks
ones: a reliable identification model must be able to successfully simulate all the involved
variables.

2.5. Recurrent Neural Networks

The target of this section is to implement an additional identification method in order
to get rid of all the system complicated non-linear equations and to try to achieve an
improvement over the models analysed in Section 2.4.
A general outline regarding recurrent neural networks has been provided in the Intro-
duction: these networks are particularly interesting when dealing with identification and
control problems, owing to their ability to describe dynamical systems [9, 55]. How-
ever, their flexibility comes at the cost of computationally heavy and complex training
algorithms [64], which typically suffer of the exploding gradient issues [34].

In general, RNNs are stateful neural networks that can be described as a dynamical
state-space model: {

xk+1 = f(xk, uk; Φ)

yk = g(xk, uk; Φ)
(2.12)

where x ∈ Rnx is the state vector, u ∈ Rnu is the input, y ∈ Rny is the output and Φ is the

34 2| Model Identification

set of parameters (weights and biases) that are computed during the training procedure
[11].

The most advanced RNN architectures include the category of gated RNN, in which the
internal loops are regulated by the so-called gates, that make them more suitable to learn
dynamical systems [11]. To be precise, LSTM and GRU networks belong to this group.

2.5.1. Long Short-Term Memory

Recurrent neural networks with Long Short-Term Memory (LSTM) have emerged as an
effective and scalable model for several learning problems related to sequential data [28].
In particular, they have been recently proposed to solve the aforementioned issues (van-
ishing and exploding gradient problem).
The central idea behind the LSTM architecture is a memory cell, which can maintain its
state over time, and non-linear gating units, which regulate the information flow into and
out of the cell [28]. This means that given the input at every time step, the LSTM model
generates hidden representation/embeddings at every time step, which are then used for
prediction. Essentially, the LSTM model defines a transition relationship for the hidden
representation through an LSTM cell, which takes the input of features at the current
time step and the inherited information from previous time steps [37].

In more detail, it is possible to describe an LSTM network in the following state-space
form [9, 11] (single-layer structure):





χk+1 = fk ◦ χk + ik ◦ ϕ(Wcuk + Ucξk + bc)

ξk+1 = ok ◦ ϕ(χk+1)

yk = Uyξk + by

(2.13)

where χ ∈ Rnx is the so-called hidden state and ξ ∈ Rnx is the cell state.
Then, fk, ik and ok are the forget, input and output gates, respectively, that rule the
information flow throughout the network, i.e. they are the elements that allow to prevent
the vanishing and exploding gradient problem [34, 64]. Furthermore, the gates can be
described by

fk = σ(Wfuk + Ufξk + bf)

ik = σ(Wiuk + Uiξk + bi)

ok = σ(Wouk + Uoξk + bo)

(2.14)

where the state vector of the network is xk = [χ′
k, ξ

′
k] and the set of weights that must be

tuned during the training procedure is Φ = {Wf , Uf , bf ,Wi, Ui, bi,Wc, Uc, bc,Wo, Uo, bo, Uy, by},

2| Model Identification 35

which is indeed a huge set and hence the training process is not trivial at all. In particular,
the weight matrices are Wf ,Wi,Wc,Wo ∈ Rnx×nu , Uf , Ui, Uc, Uo ∈ Rnx×nx and the bias
vectors are bf , bi, bc, bo, of proper dimensions [9].
In addition, the activation functions that introduce non-linearity in the RNN [60] are the
sigmoid and the hyperbolic tangent, respectively denoted by σ(x) = 1

1+e−x and
ϕ(x) = tanh(x). Lastly, the Hadamard (element-wise) product between two generic vec-
tors u and v is indicated by u ◦ v [11].

2.5.2. Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is a special type of optimized LSTM-based recurrent
neural network [71]. The GRU internal unit is similar to the LSTM internal unit [16],
except for the fact that the GRU combines the incoming port and the forgetting port in
LSTM into a single update port [56].
In particular, it is a fair trade-off between architecture complexity and modelling per-
formance [7]: GRU has a simpler structure with respect to LSTM, thanks to which the
number of weights is reduced.
Finally, the state-space model of GRU can be written as [11] (single-layer structure)

{
xk+1 = zk ◦ xk + (1− zk) ◦ ϕ(Wruk + Urfk ◦ xk + br)

yk = Uoxk + bo
(2.15)

where zk and fk are the gates, described by

zk = σ(Wzuk + Uzxk + bz)

fk = σ(Wfuk + Ufxk + bf)
(2.16)

Again, the weights and biases of the network are Φ = {Wr, Ur, br,Wz, Uz, bz,Wf , Uf , bf , Uo, bo}.
In a nutshell, during model fitting the weights and biases are updated to minimize the
model and data mismatch [53].

2.5.3. Python Implementation

Once the models are defined, firstly an architecture and its hyperparameters must be
chosen, then one can proceed to apply the selected RNN to the available data.
It should be reminded that the dataset shown in Figure 2.2 is used for training (the first
13300 observations) and for validation (the last 410 observations), whereas the dataset
shown in Figure 2.3 is used for testing (daily simulation with a total of 1340 observations).

36 2| Model Identification

In particular, the neural network will be characterized by six inputs (boiler temperature
and load profiles) plus seven outputs (five load supply temperatures, return temperature
and mass flow rate).
Additionally, as in Section 2.4, the RNN is fed with the measured inputs only, so that
the identification is performed in simulation and not in prediction. Actually, the output
measurements are given to the algorithm simply in order to compute the loss function
during training.
Moreover, the implementation of the various networks is performed with the Python
programming language (version 3.10), using the library developed in [8]. All computations
are done on an Intel Core i7-1195G7 processor.

2.5.3.1. Hyperparameters

A crucial task for any deep learning network is to determine the so-called hyperparameters.
Specifically, RNNs require very few hyperparameters to choose, such as the number of
hidden layers, the number of nodes (or neurons) in each layer and the optimizer employed
in the training process. The choice of these parameters is truly challenging due to the
vast search space and unknown model behaviours: a manually tuned RNN model for a
sequential dataset does not perform well for a different dataset [79].
In order to better understand these parameters, it is useful to visualize them graphically,
as shown in Figure 2.5.

Figure 2.5: A schematic representation of an illustrative RNN. The input layer (6 inputs)
is depicted in light-blue, the two hidden layers (7 neurons each) are displayed in green
and the output layer (5 outputs) is depicted in orange.

2| Model Identification 37

First, an hidden layer is basically an intermediate layer between the input and the
output layer of the network, and it is the collection of small neurons which transfer the
data to layers [40, 84].
The choice of the number of hidden layers is critical, since under-fitting or over-fitting may
occur and hence the efficiency, time complexity and overall performance of the network
may be affected [84]. Specifically, over-fitting happens when a learning algorithm fits the
training dataset so well that noise and data peculiarities are memorized. By contrast,
under-fitting occurs when the model is incapable of capturing the variability of the data
[36].
To avoid these phenomena, as reported in Table 2.2, three GRU having respectively one,
two and three hidden layers are benchmarked.

Second, as far as the number of nodes is concerned, the tuning is made with a trial and
error approach, by always considering the state dimensionality [11]: being the outputs
seven, one network having 14 neurons per layer (intuitively 2 neurons per output) and
one having 70 neurons per layer (10 neurons per output) are compared (see Table 2.2).

Finally, regarding the optimizer, many gradient-based algorithms are available to solve
the training problem. In practice, when the mean square error (MSE) on the validation
set stops improving, the training is stopped [11].
In particular, in this thesis two algorithms are considered:

• Root Mean Square Propagation (RMSProp), which has an excellent performance in
non-line and non-stationary settings [14] and converges with a proper choice of the
hyperparameters, under certain conditions [75];

• ADAptive Moment estimation (ADAM), an efficient stochastic gradient descent-like
optimizer that only requires first-order gradients, little memory and which combines
the advantages of AdaGrad and RMSprop, even through an easy implementation
[14].

2.5.3.2. Training Method

The approach exploited for the RNN training is the so-called Truncated Back-Propagation
Through Time (TBPTT) method [7], which consists in extracting shorter and partially-
overlapping input-output subsequences, whose length is Ts, from the input-output data
of the experiment (indicated as (u{i},y{i}

m)).
In practice, the network is trained by minimizing the MSE (loss function L) between the

38 2| Model Identification

RNN prediction and measured output [11]:

min
Φ

{L(Φ) = MSE(It; Φ)} (2.17)

computing the MSE as

MSE(Iα; Φ) =
1

|Iα|(Ts − Tw)

∑

i∈Iα

Ts∑

k=Tw

(yk(x0,u{i}; Φ)− y
{i}
m,k)

2 (2.18)

where Iα denotes the number of subsequences in the training (It), validation (Iv) or test
set (Ii), yk(x0,u{i}; Φ) is the RNN output initialized in the random state x0 and fed by
the input sequence u{i}, and Tw is the washout period, i.e. in our example the first thirty
steps are discarded because of the random initialization [11].

Another fundamental expedient to get great results, after the division of the dataset into
training, validation and test sets, is to normalize the quantities with respect to their mean
and standard deviation. Actually, inputs and outputs have different units of measurement
and orders of magnitude, and hence it is convenient to have a standardized distribution,
with zero mean and standard deviation one.

Finally, the network is trained over a period of 1500 epochs, even though the loss function
usually stops decreasing much earlier (early stopping), with an optimization learning rate
of 0.003, so as to get a good trade-off between convergence speed and excessive oscillations
avoidance [5].

2.5.3.3. Results Comparison

In order to find the best combination of network, optimizer, number of hidden layers and
of neurons, many tests are carried out. In Table 2.2 it is possible to appreciate such
combinations, along with the training time required to reach the best epoch (BE), i.e.
the epoch in which the FIT is at its maximum, and the performance indexes. These
last quantities, in detail, are the overall FIT (computed by taking into account all the
identified outputs) and the minimum and maximum R2 values, i.e. associated to the worst
and to the best predicted variable.

2| Model Identification 39

RNN Optimizer Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU ADAM 1 14 73.8 65.2 98.4 233 5’

GRU ADAM 2 14 82.1 88.8 98.9 296 10’

GRU ADAM 3 14 80.6 84.3 98.8 1496 1h2’

GRU ADAM 2 70 76.9 78.1 97.6 689 33’

GRU RMSProp 2 14 76.2 81.7 97.6 125 3’

LSTM ADAM 2 14 78.8 86.4 98.6 659 17’

Table 2.2: Performance comparison among different models of RNN.

By observing the previous table, it is possible to draw some conclusions.

First, a GRU optimized with ADAM and having 14 neurons per layer, yields the best
simulation performance when the hidden layers are two: in fact, both with one and with
three hidden layers the FIT is smaller than with two of them. This is due to an under-
fitting (1 layer) and over-fitting (3 layers) phenomenon.

Second, if the number of nodes is increased from 14 to 70, the FIT slightly drops because
of over-fitting. Furthermore, the higher is the number of weights to determine, the longer
is, clearly, the training time (see the network with three hidden layers or the one with 70
neurons per layer), which is, however, still reasonable.
All these considerations lead to consider the GRU network containing 2 hidden layers,
with 14 neurons each and optimized through the ADAM algorithm the best analysed so
far.

Third, by having the just mentioned network as benchmark, it is possible to compare it
with others slightly modified. As expected, the GRU performs better when the optimizer
is ADAM, if compared to RMSProp, even though the latter achieves a slightly faster
procedure. In addition, by keeping again all the same hyperparameters, but this time
exploiting the LSTM network, it is trivial to conclude that the latter is worse both in
terms of FIT and of time to reach the best epoch.

In conclusion, from now on, the GRU network highlighted in Table 2.2 will be used to
identify the outputs of the AROMA DHN. In Figure 2.6 the identification performed by
such a network on the test set is finally shown.

40 2| Model Identification

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

100

(a) First load supply temperature

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

100

(b) Second load supply temperature

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

(c) Third load supply temperature

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

(d) Fourth load supply temperature

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

(e) Fifth load supply temperature

200 400 600 800 1000 1200

45

50

55

60

65

70

75

(f) Return temperature

200 400 600 800 1000 1200

6

8

10

12

14

16

18

20

22

(g) Return mass flow rate

Figure 2.6: Variables identified by the best GRU (red) compared to the real ones (blue).

As visible from the previous plots, generally speaking, the identified outputs are clearly
very close to the measured ones, in some cases almost overlapping.
However, the prediction is more accurate when the variables identified are closer to the

2| Model Identification 41

heating station (e.g. T s
1 and T s

2), and in fact their R2 value is always higher than the
one of farther quantities (e.g. T r or T s

5 , whose R2 typically coincides with the minimum).
Indeed, this performance index is needed to spot where are the major identification issues
in order to locally intervene.
Besides, the identification is even robust with respect to the WGN added intentionally as
exogenous disturbance to the inputs, since the algorithm does not fit and memorize the
noise. Overall, the GRU performance is definitely powerful and effective, even if, it goes
without saying, there is still room for improvement.

2.5.4. ARX and GRU Comparison

Now that both polynomial models and recurrent neural networks have been implemented
and investigated, a comparison between the finest of the two categories is here reported.
Specifically, to be fair, the identification is carried out on a MISO (Multiple Input Single
Output) system: the usual six inputs and the fifth load supply temperature as output.
Moreover, the GRU is optimized through the ADAM algorithm and it is made of two
hidden layers having each 5 nodes (since only one output is considered).

In particular, in Figure 2.7 the identified T s
5 is compared with its measured value, whereas

in Table 2.3 the identification FIT values of the ARX model and the GRU network are
placed side by side. Needless to say, the GRU network outperforms the ARX model. On
the other hand, this comes at a cost. Great performance and high accuracy result in a
complex and computationally expensive training procedure. For instance, the outcome
obtained through the ARX model is almost instantaneous, the one achieved through the
RNN, instead, requires approximately one hour of training (1500 epochs). In addition,
the ARX identification is pretty straightforward, also thanks to the toolbox ease of use,
whereas the GRU identification takes time and efforts for the programming part. However,
since the system under control is characterized by a non-linear behaviour, it is evident
that standard linear model structures, such as ARX and OE models, are not appropriate
[11, 74]. Ultimately, for control purposes it is better to have a precise and effective
simulation tool, and therefore the GRU network is the most suitable for that target.

Model FIT [%]
ARX 60.8

GRU 68.8

Table 2.3: ARX and GRU FIT comparison.

42 2| Model Identification

0 200 400 600 800 1000 1200

Time [min]

70

75

80

85

90
T

e
m

p
e
ra

tu
re

 [
°

C
]

(a) Fifth load supply temperature identified by ARX (red) compared to the real one
(blue).

200 400 600 800 1000 1200

65

70

75

80

85

90

(b) Fifth load supply temperature identified by GRU (red) compared to the real one
(blue).

Figure 2.7: ARX and GRU results comparison.

2.5.5. Identification of a Daily DHS Operation

Up to now, the identification methods have only been tested on some PRBS signals
specifically built to successfully excite the system. At this stage, however, it is good
to use the selected technique (GRU) to identify the usual seven outputs in a realistic
case. Basically, once the network is trained with the 10-day exciting signals (data used as
training and validation set), it is possible to exploit it in order to predict some realistic
trends. In practice, the inputs shown in Figure 1.10 and the outputs in Figure 1.11 are
given as test set (typical DHS working day) to the GRU.
In Figure 2.8 the simulation results can be appreciated. Once again, the performance is
quite satisfactory: as a matter of fact, the FIT is 83.1%, R2

min is 82.2% (corresponding to

2| Model Identification 43

T r) and R2
max corresponds to T s

2 with a value of 98.2%.

200 400 600 800 1000 1200

65

70

75

80

85

90

95

(a) First load supply temperature

200 400 600 800 1000 1200

65

70

75

80

85

90

95

(b) Second load supply temperature

200 400 600 800 1000 1200

65

70

75

80

85

90

(c) Third load supply temperature

200 400 600 800 1000 1200

65

70

75

80

85

90

95

100

(d) Fourth load supply temperature

200 400 600 800 1000 1200

65

70

75

80

85

90

95

100

105

(e) Fifth load supply temperature

200 400 600 800 1000 1200

55

56

57

58

59

60

61

62

63

64

(f) Return temperature

200 400 600 800 1000 1200

2

4

6

8

10

12

14

16

18

20

(g) Return mass flow rate

Figure 2.8: Daily simulation: variables identified by a GRU (red) compared to the real
ones (blue).

44 2| Model Identification

2.6. Conclusions

In this chapter we presented different types of black-box techniques used to identify the
AROMA network model. Actually, proving how performing and efficient could be some
machine learning techniques was the very first challenge of the thesis. Indeed, the vast
majority of modelling methods employed in literature to describe district heating networks
is based on physical principles and not on data. In particular, it has been pointed out how
recurrent neural networks outperformed state-space and polynomial models, thanks to
their recursive structure fully capable of describing the system non-linearities. Moreover,
among the possible categories of RNNs, GRU networks turned out to be slightly better
than LSTMs, concerning training time and predictive accuracy, mainly because of their
simpler architecture. In conclusion, we proved how neural networks are perfectly suitable
to describe a DHN model, particularly because they allow to avoid the use of complicated
and often insufficient first principles non-linear equations. However, there is definitely
still room for improvement.

45

3| Physics-based Recurrent

Neural Networks

3.1. Chapter Overview

This chapter seeks to underline the main drawbacks of traditional data-driven and model-
based methods, and accordingly to point out the advantages of a novel approach, namely
physics-based machine learning. After a short literature review on the topic, two physics-
based approaches are discussed and implemented, one "soft" and the other "hard-code".
In particular, the latter, which ends up to be the most effective and innovative, is thor-
oughly deepened and compared to standard identification techniques. Finally, a sensitivity
analysis on the proposed physics-based neural network approach is carried out.

3.2. Physics-based Machine Learning

When developing predictive models for control purposes, one has to balance model accu-
racy, complexity and robustness [21]. In general, machine learning-only or physics-only
approaches may not be sufficient for knowledge discovery in complex scientific and en-
gineering applications [37]. This is the reason why in this chapter a novel method to
identify the variables of a district heating network is proposed.

3.2.1. Motivations and Objectives

In Chapter 2 some traditional black-box models have been analysed, so as to identify
the main variables of the AROMA network. Sometimes, however, using this type of
algorithms is not the best solution owing to four main problems. First, state-of-the-art
black-box machine learning methods require a large supervision in the form of labelled
data that is not always available in scientific problems. In addition, these data often
cover only a confined spectrum of the actual data distribution. Third, in some cases,
black-box models produce inconsistent solutions with physics-based knowledge. Finally,

46 3| Physics-based Recurrent Neural Networks

these methods are unable to discover novel scientific insights from data, because of the
very nature of their design [39].
In conclusion, black-box models suffer from poor interpretability being not explicitly
designed to represent physical relationships and to provide mechanistic insights.

On the other hand, model-based methods, whose solution structure is deeply rooted in
the system scientific knowledge, may not exhaustively capture the dynamics underlying
the process, being often incomplete or imperfect [39]. In particular, for complex large-
scale systems such as district heating, obtaining the overall model from first principles is
a time-consuming and impractical task [21].

In response to these drawbacks, in the scientific community there is a growing interest to
embed scientific knowledge in machine learning frameworks, in order to produce physically
consistent solutions despite the data paucity. These novel models, which aim at com-
bining physical knowledge with data-driven methods, are referred to as "Physics-based"
Machine Learning (PB-ML), as well as "Physics-informed" (PI-ML), "knowledge-guided",
"physics-guided" or "theory-guided data science" [39].

Additionally, three fundamental objectives motivate PB-ML research. First, given obser-
vations of X and Y as training data, the improvement of predictive accuracy in estimating
the output variables over classical data-driven methods and model-based techniques. Sec-
ond, the goal is to increase the computational efficiency too. Third, PB-ML aims at
attaining the capability to learn new scientific knowledge from data. To sum up, hybrid-
physics-data learning uses scientific knowledge as an additional source of supervision to
learn generalizable ML models, both optimizing model accuracy (measured on the labelled
training set) and scientific consistency (evaluated even on out-of-sample distributions)
[39].

3.2.2. Categorization of PB-ML

In literature, mainly four strategies are adopted to combine data-driven and science-based
learning methods. The categorization and analysis of recent research on PB-ML are ex-
haustively discussed in [39], which is a book intended to bring together the existing works
regarding knowledge-guided machine learning happening in diverse scientific communities.

First, scientific knowledge-guided learning is a "soft" way to incorporate scientific
knowledge in ML frameworks, since additional loss functions are included in the learn-
ing objectives of neural networks, and hence the training procedure is merely modified,
without an alteration in the ML architecture. Specifically, loss functions measure the
inconsistency of ML solutions relative to scientific equations and laws [39].

3| Physics-based Recurrent Neural Networks 47

An example can be appreciated in [38], where, in order to predict lake temperature pro-
files, the energy conservation law is combined in the loss function (L) with the training
objective of standard LSTM models. In addition, the authors include in L an extra
penalty for violation of density-depth relationship, by making use of a ReLU (Rectified
Linear Unit) function. Jia et al. noted that not only the predictive accuracy improved,
but also it was possible to use a smaller amount of observed data (e.g. 2% of original
data) because the energy conservation law and density-depth constraint regularized the
model to retain physical consistency.
A similar approach is adopted in [21], where the authors add constraints in the loss func-
tion so that the model variables remain within physically realistic bounds.
Finally, in [60] Physics-based Neural Networks (PB-NNs) recover the solution to the par-
tial differential equations (PDEs) by simply incorporating loss functions based on the
PDEs, initial conditions and boundary condition residual errors and by constructing two
separate networks, one for each output variable.

Second, scientific knowledge-guided architecture methods "hard-code" physical knowl-
edge directly in the solution structure of ML models. For instance, they are used to encode
known forms of invariances and symmetries in the system predicted outputs or to hard-
code the knowledge of relationships among physical variables in the connectivity patterns
of nodes in a NN architecture. Another possibility is to construct knowledge-guided ar-
chitectures where the sequence of intermediate features extracted at the hidden layers of
a NN are informed by scientific knowledge [39].
An example of such a strategy is analysed in [18], where novel physics-based connections
are introduced among neurons in the network to capture physics-based relationships of
lake temperature. Moreover, in [41] the authors propose a hierarchical deep learning ar-
chitecture that explicitly models intermediate memory states and fluxes to incorporate
the physical relationships among different hydrological processes. Finally, an example in
a distinct topic, i.e. quantum mechanics, is provided in [3]. In this article, Anderson et al.
set up the network so that each neuron corresponds to a set of physical atoms and each
activation is covariant to symmetries. In such a way, the laws that individual neurons
learn resemble known physical interactions.
As one can understand, incorporating science knowledge in ML architecture is quite
"problem-dependent", since each application requires a different problem set-up.

Third, scientific knowledge-guided initialization can also help to achieve better gen-
eralization even on unlabelled samples.
In [38], in order to improve the performance given very few observed data, the authors
pre-train the PB-NN using the simulated data produced by a simple physics-based model.

48 3| Physics-based Recurrent Neural Networks

Furthermore, in [60] Niaki et al. use the weight matrices and bias vectors of the neural
network previously trained as initial values of weights and biases for each similar problem.
Similarly, in [41] the authors exploit the predicted value from the previous sample to act
as initial value for the next sample.

Lastly, hybrid-science-machine learning modelling has the purpose of jointly using
science-based and machine learning models to deliver better predictive performance than
standard methods alone. Interesting examples of such an approach can be appreciated in
[17, 68].

3.3. PB-RNN Implementation for a DHN

Now that scientific literature regarding physics-based machine learning has been explored,
it should be clear that, at least to the best of the author’s knowledge, there is a deficiency
of such a learning strategy in district heating applications. Therefore, this thesis attempts
to provide an implementation and analysis of different physics-based RNN techniques and
to illustrate their advantages over traditional data-driven models.

Actually, the results obtained in Chapter 2 are satisfactory and do not violate physical
laws, but nevertheless the predictive accuracy and the training time could be surely im-
proved by implementing finer learning algorithms. In fact, by observing Figure 2.6, 2.8
and Table 2.2, two main issues may be noticed. First, at the beginning of the prediction,
the error is always considerable due to the random initialization. Second, the minimum
R2 values (related to the toughest load variables to identify) are rather low and hence
they need to be risen through a more powerful identification strategy.

Finally, in this chapter the usual identification configuration explained in Chapter 2 is
exploited, but in this case with some additional outputs, for a more comprehensive iden-
tification. In fact, besides the usual six inputs (T boiler

ref and P load
i), seventeen outputs must

now be identified, i.e. the supply and return temperature of each load, its mass flow rate
and the overall return temperature and mass flow rate (see Figure 3.1).

3.3.1. Constrained Loss Function

As introduced in section 3.2.2, a first approach to enhance the identification performance
may be to "softly" include some physical laws or constraints, properly weighted, directly
in the loss function (L). This is intended to try to raise the predictive accuracy, but,
intuitively, not to reduce the training time, since more mathematical operations will be
included in L.

3| Physics-based Recurrent Neural Networks 49

As far as DHNs are concerned, a simple constraint regarding load temperatures must be
always verified, i.e. at any instant of time and in every load the supply temperature must
be greater than the return one (3.1).

T s
i (t) > T r

i (t), ∀t ∈ T, ∀i ∈ {1, .., nload} (3.1)

This inequality can be rewritten via a slack variable, namely si, to indicate the value by
which each constraint is violated (3.2).

T s
i = T r

i − si → si = max(0, T r
i − T s

i) (3.2)

In detail, if (T r
i −T s

i) is negative, then no penalty must be added in the loss function and
indeed si = 0. By contrast, if (T r

i − T s
i) is positive, T r

i is exceeding the bound, resulting
in a non-zero value of the slack variable. In particular, this type of constraint can be
straightforwardly implemented by means of a ReLU function and included as auxiliary
weighted term in L [21].
Specifically, the following loss function augmented with penalty terms is optimized to
train the GRU:

Lconstrained = LMSE +
1

N

nload∑

i=1

λi||si||22 (3.3)

where the first term computes the MSE between observed and predicted outputs over N
time steps, whereas the second term penalizes violations of the aforementioned inequality
constraints [21]. Finally, λi is the weight associated to the ith slack variable, carefully
selected through a trial and error approach which led to choose a value of 0.002 for all of
them.

At this point, by replacing the traditional loss function with the new one, a results com-
parison can be made. In detail, both GRU networks are implemented with six layers and
fifteen neurons each hidden layer, for a reason that will be clarified in section 3.3.2.
The so-formed RNN could be schematized as represented in Figure 3.1.

50 3| Physics-based Recurrent Neural Networks

GRU
6 layers

𝑇𝑟𝑒𝑓
𝑏𝑜𝑖𝑙𝑒𝑟

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑇1
𝑠

𝑇1
𝑟

𝑚1

𝑇2
𝑠

𝑇2
𝑟

𝑚2

𝑇3
𝑠

𝑇3
𝑟

𝑚3

𝑇4
𝑠

𝑇4
𝑟

𝑚4

𝑇5
𝑠

𝑇5
𝑟

𝑚5

𝑇𝑟

𝑚𝑟

Figure 3.1: A schematic representation of the GRU implemented both with the traditional
loss function and with the constrained one. Inputs are highlighted in light-blue, outputs
in orange.

Finally, in Table 3.1 a comparison between the standard GRU and the one optimized with
the constrained loss trained for 1500 epochs is reported. In particular, one can appreciate
the FIT (2.1), the minimum and maximum R2 value (2.2), together with the best epoch
(BE) and the training time to reach it, i.e. the time to reach the FIT peak.

Model FIT[%] R2
min[%] R2

max[%] Best Epoch Time BE
Standard GRU 72.6 69.7 97.5 1495 2h29’

GRU with Lconstrained 70.3 69.1 97.1 1333 6h

Table 3.1: Performance of a GRU with constrained loss function compared to a traditional
one.

The results provided in the previous table explicitly show that there is not a performance
improvement when the GRU is trained by minimizing a constrained loss function, in the
case of the AROMA network. Also, the training time required to reach the highest value
of FIT is dramatically high and pretty unacceptable. This is due to the additional op-
erations that must be performed at each epoch to compute the 2-norm of the five slack

3| Physics-based Recurrent Neural Networks 51

variables vectors.
In conclusion, this new physics-based method is not suitable to fulfil the previously men-
tioned objectives.

3.3.2. A Novel RNN Architecture

A district heating network is a complex thermo-hydraulic system characterized by a spe-
cific modular and sequential topology, as explained in Chapter 1. Such consideration
leads us to think that the most effective way to include scientific knowledge in the ML
algorithm is not by simply adding some physical equations in the loss function, but rather
by drastically modifying the RNN architecture, so as to make it resemble the DHN one.

In practice, it is intuitive that preceding consumers influence subsequent ones and there-
fore their corresponding variables. Thus, the novel idea proposed by this thesis is to model
each load (or loads cluster) as an RNN with a single hidden layer, so that its predicted
output variables are given as inputs to the subsequent consumers (again each one mod-
elled as an RNN) that are directly affected by the former. A schematic representation of
how the ith load of the AROMA network is encoded as a single GRU model is reported
in Figure 3.2.

𝑻𝒊
𝒓

𝑻𝒊
𝒔

𝑷𝒊

𝑻𝒊−𝟏
𝒔

𝒎𝒊

LOAD
i

𝑻𝒊−𝟏
𝒔

𝑷𝒊

𝑻𝒊
𝒔

𝑻𝒊
𝒓 𝒎𝒊

𝐺𝑅𝑈𝑖

Figure 3.2: An intuitive representation of how the ith load and variables of the physical
system are turned into a GRU model. Its inputs are depicted in light-blue, the outputs
in orange. The user is represented in green, the forward pipe in red and the return line
in blue.

Specifically, each forward pipe connected to the ith user and the consumer itself are hard-
coded as a GRU network whose input is, besides power, the supply temperature(s) of the
preceding load(s). Additionally, the outputs to be identified are its own supply temper-
ature, return temperature and mass flow rate. Actually, the input choice is not trivial,

52 3| Physics-based Recurrent Neural Networks

as different and subtle variables influence the ith outputs behaviour (see Section 3.3.2.1).
Moreover, another assumption that must be experimentally confirmed is the possibility
to enclose all the return pipelines in a unique GRU, with appropriate inputs.

3.3.2.1. Input Choice

As anticipated, a thoughtful selection of which inputs must be fed to the ith GRU network
is crucial to reach outstanding identification results. Another fundamental aspect to take
into account is the scalability of the physics-based approach. In fact, by encoding each
consumer as an RNN, it is evident that whenever the number of loads increases the number
of RNNs, and hence of layers and neurons, explodes. As a result, it is essential to pick
a reasonable amount of inputs, and thus of nodes per each hidden layer. Actually, the
purpose of this work is to provide a physics-based identification method for the case study
under discussion, but even scalable if applied to other district heating systems.

On the one hand, regarding temperature, it is of primary importance figuring out which
T s
i influences which load. Actually, as discussed in Chapter 2, when dealing with wide

thermal systems the main identification problem in terms of accuracy is related to the
furthest consumers, which is indeed intuitive, being the RNN simply fed with the overall
supply temperature. Thereby, by breaking down the neural network into physics-related
modules, each ith GRU can identify its own T s

i , which will be then given as input to the
subsequent GRUs that are directly influenced by the ith one. In such a way, each GRU
is fed with the supply temperatures of the closest loads, and, hopefully, its identification
performance improves. In order to understand how the consumers of the AROMA network
affect each other, we may recall the forward-part scheme:

Figure 3.3: AROMA network scheme representing the forward-flow part: arcs are plotted
in red, users in green and nodes are referred to as Fi.

3| Physics-based Recurrent Neural Networks 53

As visible from Figure 3.3, node F2 impacts on F3 only, whereas nodes F3 and F6, being
located before a ramification and a conjunction, respectively, are not that trivial. In
practice, even though the graph is oriented, it has been empirically detected that in some
arcs the flow direction may change according to the power demand. For instance, if the
consumer positioned in node F5 requires a much larger amount of power than the user
placed in node F8, then the arc between node F4 and F7 will have an opposite direction
with respect to the usual one (depicted in Figure 3.3). As a result, not only F3 impacts
on F5 and F8, but we shall assume that F6 influences F5 and F8 too. Ultimately, F5 and
F8, being the final nodes (or well nodes) do not affect any other user. To sum up, it is
possible to graphically view what just explained for a better grasp:

GRU1

GRU2

GRU3

GRU5

GRU4

SUPPLY

Figure 3.4: Scheme representing the impact of each load on the others in the AROMA
network, in terms of supply temperature. Users (GRUs) are depicted in green, supply in
red. Each GRU connection has a different line style to better visualize the dependence.

Figure 3.4 clearly shows that the first two GRUs, corresponding respectively to nodes F2
and F6, receive as input the supply temperature (T boiler

ref). Besides, the third GRU (node
F3) gets T s

1 only, whereas both the fourth and the fifth GRUs (node F8 and F5) are fed
with T s

2 and T s
3 .

One final remark which is of crucial importance: the AROMA system is a meshed network,
characterized by conjunctions and ramifications. The networks represented by this kind
of topology must be carefully examined in order to learn how the water flow behaves
according to different power configurations, which is usually not self-evident. By contrast,
radial networks are typically easier to understand being characterized by ramifications
only: their shape indeed is similar to a tree and each previous node affects the subsequent
ones simply according to the arcs direction.

On the other hand, as far as power is concerned, at first glance it would be intuitive
providing to the ith load its associated consumption. In such a way, each GRU would

54 3| Physics-based Recurrent Neural Networks

have only one additional input and the approach would be easily scalable in the case of
much more users. To gain a better understanding of how such an RNN is implemented,
a schematic representation of the ith and (i+ 1)th GRUs is reported in Figure 3.5.

𝑻𝒊
𝒓

𝑻𝒊
𝒔 𝑻𝒊+𝟏

𝒔

𝑷𝒊 𝑷𝒊+𝟏

𝑻𝒊−𝟏
𝒔

𝑻𝒊+𝟏
𝒓𝒎𝒊 𝒎𝒊+𝟏

𝐺𝑅𝑈𝑖 𝐺𝑅𝑈𝑖+1

Figure 3.5: Schematic physics-based RNN having as input, besides the supply temper-
ature, the single Pi. Inputs are depicted in light-blue, outputs in orange. Being T s

i an
output for the ith load and an input for the subsequent one, it is represented both in
light-blue and in orange.

An issue that clearly stands out by adopting this choice is that the model of each neural
network is not considering the influence of the other loads consumption, which is obviously
a core information to make the system correctly capture the dynamics of temperatures
and mass flow rates. For instance, if the last consumer requires a huge amount of power,
then the district heating network must adapt its mass flow rate to satisfy this demand,
and hence the other users will receive a smaller volume of water.
As a consequence, a further step that could be investigated is the choice of including
all load profiles as input to each GRU. In the case of the AROMA network, this does
not represent a major problem, having only 5 consumers, and in fact this strategy was
implemented in order to study the improvements over the single-power input RNN. Indeed,
the FIT value increased when the modular GRUs were given as input all the five powers.
However, actual district heating networks are characterized by far more consumers and it
would be unfeasible to feed, for example, 100 GRUs with 100 load profiles each. Thereby,
both approaches analysed so far are unsuccessful.
Another possibility is to compute the cumulative power consumption, by summing up all
load profiles, in order to give each GRU the information regarding the overall situation of
the heating system. This means that the ith GRU can be fed with its own load profile and

3| Physics-based Recurrent Neural Networks 55

the sum of the other power consumptions, as schematically reported in figure 3.6. In this
way, a DHN having 5 loads or one having 100 loads would be characterized by 5 or 100
GRUs, respectively, each one with 2 inputs associated to power, regardless of the system
size.

𝑻𝒊
𝒓

𝑻𝒊
𝒔 𝑻𝒊+𝟏

𝒔

𝑷𝒊

𝑻𝒊−𝟏
𝒔

𝑻𝒊+𝟏
𝒓𝒎𝒊 𝒎𝒊+𝟏

෍

𝒋=𝟏, 𝒋≠𝒊

𝒏𝒍𝒐𝒂𝒅𝒔

𝑷𝒋
𝑷𝒊+𝟏

෍

𝒋=𝟏, 𝒋≠𝒊+𝟏

𝒏𝒍𝒐𝒂𝒅𝒔

𝑷𝒋

𝐺𝑅𝑈𝑖 𝐺𝑅𝑈𝑖+1

Figure 3.6: Schematic physics-based RNN having as input Pi and the summation of the
other load profiles. Inputs are depicted in light-blue, outputs in orange. Being T s

i an
output for the ith load and an input for the subsequent one, it is represented both in
light-blue and in orange.

In order to confirm this hypothesis, it is necessary to carry out a simulation and a compar-
ison between the approaches. In particular, two networks with 5 GRUs (i.e. 5 layers, each
one associated to a load of the AROMA network) are compared in Table 3.2: the first one
has the single-power input, whereas the second one the single-power and the summation
as inputs. In particular, a training procedure lasting 300 epochs is performed, since at
that stage it is already possible to catch the methods difference. Moreover, each layer has
a number of nodes proportional to the number of inputs (nneurons = [4, 4, 4, 5, 5] ·ninp, see
Section 3.3.2.3), while the return part is not yet considered (see Section 3.3.2.2).

Input Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
Pi 5 [8,8,8,15,15] 77.6 84.8 98.1 298 39’

Pi and
∑

Pi 5 [12,12,12,20,20] 85.5 92.1 99.3 274 42’

Table 3.2: Comparison between the two physics-based approaches having different inputs.

As can be seen from the previous table, giving the additional input represented by the
power summation brings to much better results, even if in just 300 epochs, with respect

56 3| Physics-based Recurrent Neural Networks

to the single-power input case. This is particularly evident regarding the minimum R2

value (and hence the overall FIT) which rises by roughly 8.6%, while nonetheless requiring
almost the same amount of time.
To conclude, the best input choice regarding power is the one that includes, in short, Pi

and
∑

Pi for each GRU. In fact, it allows to reach high fitting values in a reasonable time
and it is even scalable in case of much bigger district heating systems.

3.3.2.2. Return Network

Now that it has been explained how to treat the forward network and the loads in this in-
novative physics-based RNN approach, it is appropriate to consider the backward network
as well. Typically, the return temperature is characterized by a pretty limited dynamics
and the overall mass flow rate is not a tough variable to identify, once the single ṁi are
found by the loads-associated GRUs. This consideration leads us to implement a GRU
having a single hidden layer for the return network too.

First, as usual, the outputs outgoing from this last network are T r and ṁr. With regard
to the latter, it would be intuitive to directly compute it as ṁr =

∑nloads

j=1 ṁj. However, in
order to avoid the summation of identification errors of ṁj, it is more accurate to predict
ṁr.

Second, as far as the input is concerned, it is straightforward to include all the load return
temperatures since the objective is to identify the overall one. Indeed, it is not possible
to select just one of them because they all influence T r. Additionally, we can feed the
GRU corresponding to the return pipelines with all the single mass flow rates identified
by the loads-associated RNNs.
The so-formed return network can be schematically represented as in Figure 3.7.

𝑻𝒋
𝒓 𝑻𝒓

𝒎𝒓𝒎𝒋
𝐺𝑅𝑈𝑟

Figure 3.7: Schematic physics-based GRU used to hard-code the whole return network.
Inputs are depicted in light-blue, outputs in orange. The index j stands as usual for
j = {1, ..., nloads}.

3| Physics-based Recurrent Neural Networks 57

3.3.2.3. Overall PB-RNN with Graph Theory

Thanks to the previous explanation regarding the different parts of a physics-based model
for a district heating network, it should be now clear how to assemble them. A graphic
visualization helping to understand the complete PB-RNN of the AROMA network is
reported in Figure 3.8.

𝑷𝟏

𝑻𝒓𝒆𝒇
𝒃𝒐𝒊𝒍𝒆𝒓

𝒎𝟏

෍

𝒋=𝟏, 𝒋≠𝟏

𝟓

𝑷𝒋

𝑻𝒓

𝑷𝟐 𝑷𝟒

𝑷𝟑 𝑷𝟓

𝑻𝟏
𝒔

𝑻𝟐
𝒔

𝑻𝟑
𝒔

𝑻𝟒
𝒔

𝑻𝟓
𝒔

𝒎𝒓

𝑻𝟏
𝒓

𝒎𝟐

𝒎𝟑 𝒎𝟓

𝒎𝟒

𝐺𝑅𝑈6

𝑻𝟐
𝒓

𝑻𝟑
𝒓 𝑻𝟓

𝒓

𝑻𝟒
𝒓

෍

𝒋=𝟏, 𝒋≠𝟑

𝟓

𝑷𝒋

෍

𝒋=𝟏, 𝒋≠𝟐

𝟓

𝑷𝒋 ෍

𝒋=𝟏, 𝒋≠𝟒

𝟓

𝑷𝒋

෍

𝒋=𝟏, 𝒋≠𝟓

𝟓

𝑷𝒋

𝐺𝑅𝑈2

𝐺𝑅𝑈1 𝐺𝑅𝑈3 𝐺𝑅𝑈5

𝐺𝑅𝑈4

Figure 3.8: Scheme of the implemented physics-based RNN, highlighting the six GRUs
and their input and output variables. Inputs are depicted in light-blue, outputs in orange.
Being T s

i an output for the ith load and an input for the subsequent one, it is represented
both in light-blue and in orange.

At this stage, an insight on the implementation of this PB-RNN is suitable. In the
first place, in order to train the model the usual library [8] has been used. However, a
modification in the network structure has been applied.

In particular, the program receives as input (apart from the usual training, validation and
test sets, the batch size, the number and the length of subsequences to extract for train-
ing/validation/testing) what we might call a "pseudo-incidence" matrix. In detail, the
so-called "incidence" matrix is a well-known mathematical tool largely used in the graph
theory applied to electrical networks. In fact, algebraic graph theory informs electrical
network analysis, dynamics and design and it has enabled fundamental advances in the
theory of the electrical networks field [20].

58 3| Physics-based Recurrent Neural Networks

In detail, we say that a digraph is strongly connected if there exists a directed path from
any node to any other node. The matrix which mathematically describes this type of
graphs is called the incidence matrix, i.e. B ∈ Rn×m of graph G is defined by [20]

Bie =





+ 1, if the edge e is (i,j) for some j

− 1, if the edge e is (j,i) for some j

0, otherwise.

(3.4)

We can easily extend to a district heating network the definition of the incidence matrix
related to electrical networks, once the DHN oriented graph is available. In fact, by
looking at Figure 3.3 it is simple to find the incidence matrix of the AROMA network:

B =




+1 0 0 0 0 0 0 0 0

−1 +1 +1 0 0 0 +1 0 0

0 −1 0 +1 0 0 0 0 0

0 0 −1 0 0 0 0 1 0

0 0 0 −1 +1 0 0 0 0

0 0 0 0 −1 1 1 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 −1 1

0 0 0 0 0 0 0 0 −1




(3.5)

However, for the implementation of a PB-GRU is not necessary the entire information con-
tained in B. First, not all nodes of the graph correspond to a load, which is exactly what
we are interested in hard-coding. Second, the actual information a PB-RNN is interested
in is what are the inputs and the outputs of each single GRU. For this reason, we intro-
duce what we call the "pseudo-incidence" matrix that contains the information regarding
the loads-associated network (the return part must be treated differently). Therefore, this
new matrix can be defined as

Qij =





+ 1, if load in row i provides information to load in column j,

i.e. the input of load j is the output of load i

− 1, if load in row i receives information from load in column j,

i.e. the input of load i is the output of load j

0, otherwise.

(3.6)

3| Physics-based Recurrent Neural Networks 59

In the AROMA network case, the pseudo-incidence matrix is

Q =




0 0 +1 0 0

0 0 0 +1 +1

−1 0 0 +1 +1

0 −1 −1 0 0

0 −1 −1 0 0




(3.7)

where the rows and columns of Q correspond to the network loads, ordered as in Figure
3.8. The users order is fundamental since it is necessary to sort the physics-based GRUs
according to the flow information. For instance, load 2 provides information to load 5, and
hence the former must be identified before the latter. This is the reason why consumers
were originally enumerated according to their distance with respect to the heating station.
We could translate the Q matrix information as follows:

• the 1st load provides the supply temperature identified by its corresponding GRU
to the 3rd load;

• the 2nd load provides the supply temperature identified by its corresponding GRU
to the 4th and 5th loads;

• the 3rd load receives T s
1 as input and provides the supply temperature identified by

its corresponding GRU to the 4th and 5th loads;

• the 4th and 5th loads receive T s
2 and T s

3 as inputs.

Once this matrix is defined by the user, the program computes two other matrices.

First, it calculates the "original input matrix", which contains the information regarding
which GRU (in our case there are 6 of them, corresponding to rows, linked to the 5 loads
and the return part) needs which "original" inputs, i.e. the inputs originally provided
to the code and not computed during the training procedure (T boiler

ref , P1, P2, P3, P4, P5,
corresponding to columns):

Morig =




1 2 0 0 0 0

1 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

0 0 0 0 0 0




(3.8)

We could translate the matrix information as follows:

60 3| Physics-based Recurrent Neural Networks

• the 1st GRU, corresponding to load 1, receives as original inputs T boiler
ref (1 in position

[1,1]), P1 and the sum of the other load consumptions (2 in position [1,2]);

• the 2nd GRU receives as original inputs T boiler
ref , P2 and the sum of the other load

consumptions;

• the 3rd GRU receives as original inputs P3 and the sum of the other load consump-
tions;

• the 4th GRU receives as original inputs P4 and the sum of the other load consump-
tions;

• the 5th GRU receives as original inputs P5 and the sum of the other load consump-
tions;

• the 6th GRU, corresponding to the return network, does not receive any original
input.

Second, the program computes the "auxiliary input matrix", which contains the informa-
tion regarding which GRU (corresponding to rows) needs which "auxiliary" inputs, i.e.
the inputs computed during the training procedure (T s

1 , T r
1 , ṁ1, T s

2 , T r
2 , ṁ2, T s

3 , T r
3 , ṁ3,

T s
4 , T r

4 , ṁ4, T s
5 , T r

5 , ṁ5, corresponding to columns):

Maux =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1




(3.9)

We could translate the matrix information as follows:

• the 1st and 2nd GRUs do not receive any auxiliary input;

• the 3rd GRU receives as auxiliary input T s
1 ;

• the 4th and 5th GRUs receive as auxiliary input T s
2 and T s

3 ;

• the 6th GRU receives as auxiliary input T r
1 , ṁ1, T r

2 , ṁ2, T r
3 , ṁ3, T r

4 , ṁ4, T r
5 and ṁ5.

Moreover, the program needs to be fed with two other informative vectors: one containing
the number of outputs for each layer ([3, 3, 3, 3, 3, 2]) and one containing the coefficients
used to compute the number of neurons for each layer. This last idea requires an additional
explanation.

3| Physics-based Recurrent Neural Networks 61

In traditional RNNs, since hidden layers do not have a physical meaning, it is difficult
to decide which layers should have a greater number of nodes and as a consequence, as
seen in Chapter 2, they typically all have the same amount of neurons. By contrast, in
PB-RNNs the single-layer GRUs are associated to a physical part of the system analysed:
it is possible to understand which layers are characterized by a more difficult identification
and hence which layers should be helped with a greater number of nodes. To sum up, we
could conclude that, by observing traditional RNNs performance, it is possible to figure
out which variables are more complex to be identified. Thus, in PB-RNNs it is convenient
to set a greater number of neurons for those corresponding challenging GRUs. As usual,
each identification problem requires a trial and error parameter set-up, but the rule of
thumb driving the choice is the one just mentioned: in a nutshell, the farther the load,
the higher the number of neurons associated with it.
For instance, in the case of the AROMA PB-RNN, the first three GRUs depicted in
Figure 3.8, being the closest to the heating station, do not seem to show huge problems
in the identification procedure. Instead, the last two GRUs of the same figure are the
most troublesome in terms of R2, and in fact they achieved the worst values when using
traditional RNNs, especially the fifth (last) load. Hence, thanks to the matching between
the physical system and the neural network structure, we may modify the number of nodes
at our convenience. Specifically, another indicative rule could be to multiply the number of
inputs by a certain constant, which is then the only parameter to define: nnodes = k ·ninp.

• GRU 1, 2 and 3 do not have particular identification problems, being the associated
consumers close to the heating station, and hence their number of nodes could be
restrained. These three networks have 3 inputs each, thus the number of neurons
could be found as nnodes = k · ninp = 3 · 3;

• GRU 3 and 4, corresponding to the furthest users in the AROMA network, are the
most problematic in terms of R2 values and hence they should be helped by boosting
their number of neurons, by using for example k = 4;

• GRU 6, which corresponds to the return network, has 10 inputs. In addition, T r

and ṁr are typically characterized by quite low fitting values and hence we could
set k = 3 in order to have a total of 30 neurons for this RNN.

In conclusion, the overall vector defining the multiplication constants by which each num-
ber of input must be multiplied to compute the amount of nodes is [3, 3, 3, 4, 4, 3], in the
AROMA case. It is convenient to highlight once more that the aforementioned principle
is mainly a rule of thumb useful to guide the programmer selecting a suitable number
of neurons, by lowering and raising it where needed. Obviously, the higher nnodes the

62 3| Physics-based Recurrent Neural Networks

greater the accuracy (apart from over-fitting cases) but also the longer the training time.
Thereby, a small amount of neurons in some GRUs can compensate higher number of
nodes in other GRUs, where strictly required, in terms of complexity and training time.
Thanks to this trick, which is not possible to employ in standard RNNs, we expect to sig-
nificantly enhance the R2 values associated to the most problematic variables, and hence
the average FIT.

Once these input matrices and vectors are defined, the program iterates with a for loop
the initialization and the actual training procedure for every GRU, each one receiving its
corresponding original and auxiliary inputs and number of outputs and of neurons.

What we expect to obtain by means of this novel PB-RNN is mainly an increase in the
minimum R2 value and thus in the total FIT, thanks to the physics-based structure of
the overall neural network. In other words, feeding each GRU with the most appropriate
inputs, found through a careful analysis of the matching between the physical system and
the data-driven algorithm, should boost the performance even in terms of training time
thus reaching the target FIT more quickly than traditional methods.

3.4. Results Comparison

This section is dedicated to an analysis of the implementation results of the PB-RNN,
with a focus on the comparison between this novel approach and the traditional one.
In particular, a PB-GRU network with 6 hidden layers and [9,9,9,16,16,30] nodes is com-
pared to a standard GRU having the same number of layers and 15 neurons each layer
(being 15 approximately the average of the physics-based nnodes). In addition, both net-
works are trained over a period of 1500 epochs, using the ADAM optimizer with a learning
rate of 0.003. In such a way, the comparison is fair and the only difference lays in the
structure of the machine learning algorithm (see Figure 3.1 and 3.8).

By plotting the FIT evolution of the two networks, a striking result can be appreciated
(Figure 3.9).

3| Physics-based Recurrent Neural Networks 63

0 500 1000 1500

Epochs

0

10

20

30

40

50

60

70

80

90
F

IT
 [

%
]

Figure 3.9: Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based RNN (yellow). The target FIT is represented in blue.

Actually, two impressive improvements are visible from the previous plot. On one side,
the overall FIT value reached by the PB-RNN is definitely greater than the one achieved
by the standard RNN. On the other side, the PB-RNN takes less than 100 epochs to
overcome a FIT of 80%, which is a value that the standard RNN does not even reach
after 1500 epochs.
In order to quantitatively compare these results, the FIT, the minimum and maximum
R2 values, the best epoch (BE) and the time to reach the latter of the two approaches
are reported in Table 3.3.

Model Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU 6 [15,15,15,15,15,15] 72.6 69.7 97.5 1495 2h29’

PB-GRU 6 [9,9,9,16,16,30] 83.3 89.4 98.5 355 1h12’

Table 3.3: Comparison of the AROMA network identified with standard RNN and PB-
RNN.

Firstly, the enhancement in the minimum R2 value is astonishing. In detail, R2
min corre-

sponds, for both networks, to the supply temperature identified by the fifth GRU. This
is coherent with Chapter 2 identification results and with physics: it is the furthest con-
sumer and hence the most complex to predict. However, thanks to the physics-based
RNN structure, the R2 associated to this quantity increases from 69.7% to 89.4%, which

64 3| Physics-based Recurrent Neural Networks

is a big bump. As expected, the maximum R2, corresponding to T s
1 , has a smaller rise.

Altogether, the overall FIT has an absolute growth of 10.7%, i.e. a percentage increase
of almost 15%, which is a huge accomplishment.

In addition, the time to reach the best epoch, namely the epoch where the FIT is max-
imum, is reduced when using a physics-based approach. An interesting remark can be
drawn by observing the overall training time and the time per epoch of the two approaches.
In fact, standard RNN took two and a half hours to reach the last epoch (1500), with an
average time per iteration of 6 s/it, whereas PB-RNN took four hours and forty, overall,
with an average time per iteration of 11.2 s/it. This means that, despite the physics-based
approach is, on the whole, slower, thanks to its structure resembling the actual physical
system it takes far fewer iterations to reach outstanding results.

Finally, the plots of some identified variables are here reported. For the sake of brevity,
not all the seventeen outputs are displayed, but just the most significant, i.e. the variables
of the first and fifth GRU, plus the overall return temperature and mass flow rate.

3| Physics-based Recurrent Neural Networks 65

200 400 600 800 1000 1200

60

65

70

75

80

85

90

95

100

(a) First GRU supply temperature

200 400 600 800 1000 1200

65

70

75

80

85

90

(b) Fifth GRU supply temperature

200 400 600 800 1000 1200

52

54

56

58

60

62

64

66

(c) First GRU return temperature

200 400 600 800 1000 1200

20

25

30

35

40

45

50

55

60

65

(d) Fifth GRU return temperature

200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

(e) First GRU mass flow rate

200 400 600 800 1000 1200

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(f) Fifth GRU mass flow rate

200 400 600 800 1000 1200

48

50

52

54

56

58

60

62

64

(g) Return temperature

200 400 600 800 1000 1200

6

8

10

12

14

16

18

20

22

(h) Return mass flow rate

Figure 3.10: Variables identified by a PB-GRU (red) compared to the real ones (blue).

66 3| Physics-based Recurrent Neural Networks

3.5. PB-ML Improvements over Traditional RNNs

The bottom line of this chapter analysis is a major improvement of the PB-GRU network
over standard RNNs, which we may here summarize.

Practically speaking, a knowledge-based machine learning approach leads to higher fitting
values: in other words, the goal of increasing the predictive accuracy with respect to black-
box methods is largely attained. In addition, thanks to a precise structure resembling the
physical system, the training time to reach great results drops with respect to standard
data-driven techniques.

Conceptually speaking, another benefit of PB-RNNs is the clarity and intelligibility of such
an approach. Actually, standard neural networks do not allow a practical understanding
since their layers do not have a tangible equivalent. On the contrary, thanks to the
matching between the physical and the computer world of PB-ML approaches, a complex
structure such as the neural network one can be smoothly interpreted even by machine
learning non-experts.
The other advantage that interpretability brings with it is the ease of localizing problems
and thus of solving them. In district heating systems, for instance, it is well known that
the most distant consumers variables are the toughest to identify. Therefore, thanks to
the association of each RNN to a consumer (or, equivalently, consumers cluster) it is
possible to treat different difficulty levels of identification diversely, e.g. by increasing the
number of neurons only in GRUs where it is strictly needed to intervene. Obviously, this
does not apply to traditional RNNs because of their abstract structure.

Finally, the only questionable drawback of physics-based techniques is the more intricate
implementation and the necessity of physical knowledge of the system by the programmer.
In traditional RNNs, instead, once input and output data are collected, they can be
directly given to machine learning algorithms, even in absence of a system acquaintance.

3.6. Generalization of the PB-RNN Approach

So far we have presented this novel method applied to our specific case study, i.e. the
AROMA network, which is a simple thermo-hydraulic system particularly suitable for
this kind of experiments. This approach, in fact, is perfectly appropriate to treat district
heating networks, thanks to their modular architecture and their sequential nature. In-
deed, this is particularly true for radial networks, which have a well-defined flow direction
(that is something not necessarily right for meshed networks, as previously explained).

3| Physics-based Recurrent Neural Networks 67

Ultimately, the discussed technique could be eventually applied, under certain conditions,
to much more complex and extended systems than the AROMA network. In particular,
the plant under investigation must be characterized by a modular topology, which should
be translated into an oriented graph and thus into an equivalent scalable neural network.

To accomplish this, each load or loads cluster must be turned into an RNN having one
(or more) layer with a certain number of neurons. Similarly, the return pipelines must be
associated with its corresponding RNN.
Moreover, one has to define the pseudo-incidence matrix, the original and auxiliary in-
puts and the outputs of the system. As previously explained, the GRUs associated to
consumers have as outputs their own supply and return temperature and mass flow rate.
By contrast, their inputs must be carefully selected through an empirical verification.
Hence, apart from the corresponding power demand and the sum of the others, each
RNN is fed with the supply temperatures of the loads which directly affect that RNN.
This is obtained by studying the actual direction of the network flows. It is necessary
to go backwards starting from the ith user by following all the possible paths connected
to it, until a new load is met: this last consumer’s supply temperature will be an input
for the ith load. In addition, the return network is given as inputs the consumers’ return
temperatures and mass flow rates (or sum of ṁi).
Lastly, the programmer has to set a certain number of neurons (actually of multiplication
factors, once the number of inputs is fixed) for each part of the modular system turned
into an RNN layer (we used GRU because of Chapter 2 considerations, but other types
of networks can be certainly employed).

3.7. PB-GRU Sensitivity Analysis

In this final section, some changes are introduced into the model in order to test the
robustness of the previously analysed method. In particular, these adjustments are made
in view of control and optimization problems. Indeed, in Chapter 4 a Model Predictive
Control (MPC) algorithm will be implemented to optimally manage the AROMA network
over a daily operation. Hence, for this target, it is essential to simplify the identified model
so as to lighten the computational burden of such a complex algorithm.

Reduced Number of Neurons

A first convenient strategy is to reduce the overall number of network states, by minimizing
the amount of neurons per hidden layer. To this purpose, a PB-GRU having 6 layers and
[6,6,6,8,12,16] neurons is implemented, according to the rule of thumb discussed in Section

68 3| Physics-based Recurrent Neural Networks

3.3.2.3: the farther the load, the higher the number of neurons associated with it. Indeed,
the first three consumers usually do not present significant identification issues (6 neurons
each). By contrast, the fifth load (fifth GRU and thus fifth layer of the network) is the
most troublesome in terms of identification accuracy (being the furthest), and hence 12
neurons are associated to it. The fourth load instead seems to have less predictive issue,
being slightly closer to the heating station than the fifth user, thereby 8 neurons are
sufficient. Finally, the return network (sixth layer) is assigned 16 neurons, thus having
altogether nnodes = [2, 2, 2, 2, 3, 1.6] ◦ [3, 3, 3, 4, 4, 10].
In particular, we expect that having 54 states instead of 89 can significantly reduce the
computational time of an MPC algorithm execution (see Chapter 4). Finally, it is useful
to compare this new network with a standard GRU having again 6 layers and 9 neurons
per layer (being 9 the average of [6,6,6,8,12,16]), as reported in Figure 3.11 and in Table
3.4.

0 500 1000 1500

Epochs

0

10

20

30

40

50

60

70

80

90

F
IT

 [
%

]

Figure 3.11: Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based one (yellow), both having 54 states. The target FIT is represented
in blue. The model samples are collected every minute.

Model Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU 6 [9,9,9,9,9,9] 49.9 9.2 95.2 1234 1h55’

PB-GRU 6 [6,6,6,8,12,16] 82.8 85.1 98.9 727 1h42’

Table 3.4: Comparison of the AROMA network identified with standard RNN and PB-
RNN, using a restricted amount of neurons per layer. The model samples are collected
every minute.

3| Physics-based Recurrent Neural Networks 69

As expected, a smaller number of neurons may affect a bit the identification performance,
which is particularly evident regarding the traditional GRU: its FIT value drops from
72.6% to 49.9% when the states are diminished. In addition, the minimum R2 value is
very low and it is associated to the fifth consumer’s mass flow rate. However, the physics-
based model maintains its great performance with an average FIT of 82.8% (instead of
83.3%) and a minimum R2 value of 85.1% (instead of 89.4%). In conclusion, thanks to the
physics-guided approach, it is possible to lower the model complexity while still preserving
an impressive accuracy. This is especially helpful when handling much bigger physical
systems that may require a higher amount of layers than this case study demands: by
shrinking the total number of states, the problem complexity can be narrowed down.

Sampling Time Increase

Another possible modification to ease the control problem is to use a slightly greater
sampling time. For instance, by using a Tsampling of five minutes instead of one minute,
it is possible to solve a problem with a prediction horizon five times greater (5N) than a
prediction horizon (N) of a problem with a sampling time of one minute, having an equal
amount of optimization variables (see Chapter 4).

The procedure adopted to identify a model whose samples are collected every five minutes
is exactly the same as the one explained in Chapter 2 and 3. In detail, in order to have
the same quantity of data as the one-minute-sampled system, instead of simulating the
process for roughly 11 days (10 for training and validation and 1 day for testing), 55 days
of simulation are tested (50 for training and validation and 5 days for testing). In this
way, even though the overall period of simulation is obviously wider, the datasets of the
one-minute-sampled and five-minute-sampled model are equivalent.

Finally, it is possible to graphically visualize this adjustment, so as to show that the
identification performance is coherent with the one discussed so far and it is not affected
by the sampling time choice. To do so, a physics-based GRU having [6,6,6,8,12,16] neurons
and sampled at five minutes is compared to a standard GRU having [9,9,9,9,9,9] neurons
and again sampled at five minutes are compared (see Figure 3.12 and Table 3.5).

70 3| Physics-based Recurrent Neural Networks

0 500 1000 1500

Epochs

0

10

20

30

40

50

60

70

80

90

F
IT

 [
%

]

Figure 3.12: Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based one (yellow), both having 54 states. The target FIT is represented
in blue. The model samples are collected every five minutes.

Model Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU 6 [9,9,9,9,9,9] 49.8 36.9 95.2 1171 1h50’

PB-GRU 6 [6,6,6,8,12,16] 83.6 87.5 99.2 557 1h23’

Table 3.5: Comparison of the AROMA network identified with standard RNN and PB-
RNN, using a restricted amount of neurons per layer and 15200 samples. The model
samples are collected every five minutes.

As clearly visible from the previous plot and table, having a sampling time of five minutes
does not impact on the identification accuracy and time, confirming that the method is ro-
bust even with respect to the sampling time. Once again, the standard GRU performance
is definitely poorer than the PB-GRU one, even if under same conditions.

Reduced Number of Data

Lastly, considering the robustness of the physics-based neural networks with respect to the
amount of neurons and the sampling time, it is reasonable to think that this method could
also be powerful when handling a smaller amount of data. As always, this statement must
be empirically verified: it is necessary to identify the AROMA network whose samples
are collected every five minutes, but this time with an overall simulation lasting 11 days
in place of 55. In this way, we preserve the same period of the identification procedure

3| Physics-based Recurrent Neural Networks 71

analysed in Chapter 2. However, being Tsampling = 5 min, we have at our disposal one
fifth of the original data, i.e. 3040 samples instead of 15200.
By plotting the usual FIT-epochs graph (Figure 3.13), one can observe how the PB-
GRU trained with 20% of data (depicted in purple) still performs satisfactorily. However,
intuitively, its FIT trend is lower than the FIT of the PB-GRU identified with a dataset
containing 55 days of samples collected every five minutes (depicted in yellow). This is
even more evident in the case of standard RNNs. Indeed, as visible in Figure 3.13, when
the network is identified with a much smaller dataset (depicted in blue), its performance
dramatically drops leading to an unacceptable model accuracy. Finally, as reported in
Table 3.6, the PB-RNN trained with the reduced dataset, not only yields to reasonably
good results, but also it is able to achieve its best FIT value in a shorter period of time
than the PB-GRU trained with the complete dataset (Table 3.5).

0 500 1000 1500

Epochs

0

10

20

30

40

50

60

70

80

90

F
IT

 [
%

]

Figure 3.13: Comparison among the FIT trend of a traditional RNN trained with 15200
samples (red), of a PB-RNN trained with 15200 samples (yellow), of a traditional RNN
trained with 3040 samples (blue) and of a PB-RNN trained with 3040 samples (purple).
The model samples are collected every five minutes.

Model Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU 6 [9,9,9,9,9,9] 32.3 -11.9 86.1 29 2’

PB-GRU 6 [6,6,6,8,12,16] 71.7 67.2 94.8 102 12’

Table 3.6: Comparison of the AROMA network identified with standard RNN and PB-
RNN, using a smaller amount of data (3040 samples). The model samples are collected
every five minutes.

72 3| Physics-based Recurrent Neural Networks

For the sake of completeness, it is honest to underline that all the physics-based approaches
and the standard ones have always been compared fairly: same dataset, optimizer, same
number of hidden layers, states and epochs. However, it has been noted that the standard
GRU does not actually require so many layers, necessary instead for the physics-informed
structure itself. In fact, six hidden layers lead the traditional RNN to over-fitting. By
contrast, a standard GRU having two hidden layers, each with 17 neurons, is able to
improve the performance. Nevertheless, by comparing this best configuration of the tra-
ditional GRU with the PB-GRU, the latter still outperforms the standard network. In
detail, in Figure 3.14 it is compared the FIT trend of a traditional RNN (red) and the
FIT trend of a PB-RNN (yellow), both trained with the reduced dataset made by 3040
samples.
Even though the performance of the 2-layer standard GRU enhances with respect to the
one having six layers, the physics-based one is still superior in terms of FIT and R2

min (see
Table 3.7).

50 100 150 200 250 300 350 400 450 500 550 600

Epochs

0

10

20

30

40

50

60

70

80

F
IT

 [
%

]

Figure 3.14: Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a PB-RNN (yellow), both trained with 3040 samples. The model samples are
collected every five minutes. The training was stopped after 600 epochs because over-
fitting occurred.

3| Physics-based Recurrent Neural Networks 73

Model Layers Neurons FIT[%] R2
min[%] R2

max[%] BE Time
GRU 2 [17,17] 68.3 61.8 95.1 162 9’

PB-GRU 6 [6,6,6,8,12,16] 71.7 67.2 94.8 102 12’

Table 3.7: Comparison of the AROMA network identified with standard RNN (best
configuration) and PB-RNN, using a smaller amount of data. The model samples are
collected every five minutes.

In conclusion, identifying a system model with a physics-guided machine learning ap-
proach allows to increase the model accuracy, diminish the computational time and even
to use a narrow dataset, when it is not possible to collect plenty of samples.

A final remark: for control purposes the dataset shrinkage is irrelevant, given that it
only affects the identification procedure and not the optimization one. In fact, in MPC
the system model is exploited in the form of non-linear equations, and hence, once the
network is trained, only its weights and biases are needed. Consequently, in Chapter 4
just the first two modifications are adopted, i.e. a drop in the number of states and a rise
in the sampling time.

3.8. Conclusions

In this chapter the main challenge of the thesis has been tackled. In particular, it has
been proposed a novel architecture for RNNs, whose structure is inspired by the phys-
ical system topology. In this way, the PB-GRU networks that mimic the interactions
among physical loads are able to improve standard RNNs from different points of view:
higher predictive accuracy, faster training procedure, greater interpretability and easier
problem detection. Even though in literature several physics-based methods have been
proposed, they are mainly based on upgraded loss functions and, above all, they are
strongly problem-dependent. This is why the method proposed here is particularly effec-
tive: a generic plant with a modular structure and clear physical cause-effect relationships
can be modelled through a physics-informed neural network that resembles those physical
characteristics. In addition, thanks to the scientific knowledge about the system and to
the help of graph theory, it is pretty straightforward to implement such neural networks.

75

4| Model Predictive Control using

Physics-based Neural Networks

4.1. Chapter Overview

This chapter is focused on the optimization and control of the AROMA network. Af-
ter a general introduction about Model Predictive Control (MPC), the problem set-up
regarding the case study under discussion is described, as well as the optimization en-
vironment. Then, its implementation using the non-linear equations of the PB-GRU
model is analysed, together with a description of the cost function, constraints, observer
and disturbance forecasting needed to solve the optimization problem. In addition, some
strategies adopted to lighten the computational effort are outlined. Finally, some results
are analysed, along with a comparison between an MPC regulator that makes use of the
PB-GRU model and an MPC regulator exploiting standard GRU equations.

4.2. Model Predictive Control

Model predictive control is the most popular advanced control method in industry and
in embedded applications. Indeed, all the main automation companies such as ABB
and Siemens are equipped with software tools for its implementation. It was developed
between the late seventies and early eighties in the process industry to cope with large-
scale systems, constraints on the process variables and time varying reference signals [46].

The basic concept is to transform the control synthesis problem into an optimization
one, hence a finite-horizon control problem is stated and then solved. In practice, a time
invariant control law is obtained by means of the Receding Horizon principle: at time k

the future sequence of control variables is computed, but only its first value is used, and
at time k + 1 the optimization procedure is repeated with the same prediction horizon
(N). To sum up, MPC is based on the knowledge of a dynamic model of the system so
as to compute the future evolution of the controlled variables as function of the future
evolution of the control inputs. Moreover, the input sequence is computed by minimizing

76 4| Model Predictive Control using Physics-based Neural Networks

a cost function under state, input and output constraints [46].

The strength of this algorithm lies in a higher efficiency and tighter control with respect
to traditional PID schemes: the reference signals can be set to values near the operating
constraints, resulting in economic benefits too. Additionally, because of its structure,
MPC can easily consider the knowledge of future external disturbances, leading to a
control action improvement. For a better insight on the topic, see the source of this
chapter [46].

4.3. Non-linear MPC for a DHS using PB-RNNs

Now that a performing model of the AROMA network has been identified (Chapter 3), it
is appropriate to synthesize a controller using the aforementioned model. As anticipated,
MPC allows to exploit the long-term prediction capabilities of the model while fulfilling
input and output constraints. Typically, the feedback controller, depicted in Figure 4.1,
is made by an observer that estimates the model state xk and a finite-horizon control
optimization problem which exploits such state estimation [11].

Real output

State
estimate

Disturbances

Control action

Output
estimate

Observer

MPC Plant

Figure 4.1: Scheme of the control algorithm, including the optimization part (MPC), the
observer and the plant.

Specifically, the plant consists in the usual physical model of the AROMA network imple-
mented through Modelica (Chapter 1). Moreover, the observer, as explained in Section
4.3.7, contains the model identified by means of a physics-based Gated Recurrent Unit,
in the form of non-linear equations. Finally, the MPC block is actually far more com-
plex than the simplified representation of Figure 4.1, and this section aims to examine

4| Model Predictive Control using Physics-based Neural Networks 77

it thoroughly. Precisely, it is a non-linear MPC: the system is non-linear and hence the
state dynamics imposes non-linear constraints [46]. This requires the definition of the
Lagrangian function and the Karush–Kuhn–Tucker (KKT) conditions, which are auto-
matically computed by the optimization software (see Section 4.3.1). In conclusion, the
design of a non-linear MPC, because of the formulation of non-convex optimization prob-
lems, is definitely a challenging task [91].

4.3.1. Optimization Environment

Before going into details of the Finite Horizon Control Optimization Problem (FHCOP),
a quick introduction about the software employed is advisable. In particular, CasaADi
paired with Ipopt is exploited in the MATLAB environment.
CasaADi is an open-source tool for non-linear optimization and algorithmic differentiation,
which facilitates rapid and efficient implementation of different methods for numerical
optimal control, both in an offline context and for non-linear model predictive control
(NMPC)1.
To solve non-linear programming (NLP) problems, characterized by a cost function and
some constraints, Ipopt, which is already included in CasaADi, is exploited. The acronym
stands for Interior Point Optimizer and it is an open-source software package for large-
scale non-linear optimization: it implements an interior point search filter method that
aims to find a local solution of NLP2. The mathematical details can be found in several
publications such as [87].

4.3.2. Problem Statement

Now that a general overview on MPC has been provided, the optimization and control
problem can be formulated. In a few words, this will regulate the boiler reference temper-
ature (control action) minimizing its electrical cost while satisfying power, mass flow rate
and temperature constraints. In particular, we aim at keeping the optimization problem
as simple as possible, since its complexity is out of this thesis scope. In order to increase
the problem sophistication, a cogeneration (CHP) and a thermal energy storage (TES)
could be added as further degrees of freedom. However, the objective of this work is to
show how a non-linear model obtained through a physics-guided machine learning proce-
dure perfectly fits the control needs.
The FHCOP is solved online in order to find the optimal value of the optimization vari-
ables, which can be collected in the vector Σ = [x, u, y, P boiler, s], where

1https://web.casadi.org
2https://coin-or.github.io/Ipopt

78 4| Model Predictive Control using Physics-based Neural Networks

• x is the vector containing the system states, having dimension nstates × (N + 1);

• u is the vector containing the overall input, i.e. the control variable and the distur-
bances: u = [T boiler

ref (k);P load
1 (k);P load

2 (k);P load
3 (k);P load

4 (k);P load
5 (k)]∀k∈{1,..,N};

• y is the vector containing the outputs of the physical system which are strictly
needed in the optimization problem, i.e. not all the seventeen outputs of the actual
plant identified by the GRU:
y = [T s

1 (k);T
s
2 (k);T

s
3 (k);T

s
4 (k);T

s
5 (k);T

r(k); ṁr(k)]∀k∈{1,..,N};

• P boiler is the vector of dimension 1 × N containing the boiler power along the pre-
diction horizon N ;

• s is the vector containing the slack variables related to load constraints (see Section
4.3.4). Theoretically, it should be a matrix of dimension nslack × N . However, in
order to reduce the computational effort we could just consider the value of the
slack variables at the current instant, since their prediction along N is needless
(dimension: nslack × 1).

To sum up, all the optimization variables are reported in Table 4.1.

Symbol Description SI unit
ṁr Overall mass flow rate [kg/s]

P boiler Boiler power [W]

P load
i Load power [W]

P load
i,real Actual load demand [W]

P̃ load
i Load demand forecasting [W]

s Slack variables [◦C]

T boiler
ref Boiler reference temperature [◦C]

T s
i Load supply temperatures [◦C]

T r Return temperature [◦C]

x System states -

xobs Observed states -

Table 4.1: Main optimization variables.

4.3.3. Disturbance Forecasting

Closed-loop performance of model-based control algorithms is directly related to model
accuracy [59], that is why we selected the best model (PB-GRU with 54 states) among

4| Model Predictive Control using Physics-based Neural Networks 79

the ones discussed in previous chapters. In practice, modelling errors and unmeasured
disturbances can lead to poor performance and steady-state offset unless precautions are
taken in the control design [59].

Typically, in DHSs the daily thermal demand is unknown, even though in some cases it
could be measured in real-time. As a consequence, these disturbances must be necessarily
predicted considering that MPC exploits the non-linear equations that also depend on
loads consumption. Until now, in fact, they have been treated as known inputs for neural
networks.
However, for MPC purposes there are mainly two strategies one can follow. First, we
could measure at current time the actual power demand and assume it remains constant
in the future [59]. In real district heating systems though, thanks to the availability of
many historical weather and load data measured at the plant, a disturbance forecasting
algorithm could be effectively implemented [6]. Actually, since the AROMA network is a
theoretical case study and historical data are clearly unavailable, a thermal load forecast
could be obtained by slightly modifying the usual loads consumption (see Figure 1.10b)
and by adding a white Gaussian noise (WGN) to it. A comparison between the overall
real power request and the "predicted" one is reported in Figure 4.2.

4 8 12 16 20 24

300

400

500

600

700

800

900

1000

1100

1200

1300

Figure 4.2: Comparison between the daily disturbance forecast (red) and the actual power
demand (blue).

Ultimately, assuming a real-time measure of thermal demand is available, the initial value
P load
i (k = 1) is set to the actual power request, while the following values along the

prediction horizon (2,..,N) are constrained to be equal to the disturbance prediction (see

80 4| Model Predictive Control using Physics-based Neural Networks

Section 4.3.4).

4.3.4. Constraints

As anticipated, MPC has the benefit of including several constraints, both in the form
of equalities and inequalities, in the finite-horizon control optimization problem. Indeed,
all the optimization variables must comply with their physical/technical limits, or, in
some cases, such as the initial states, they must assume a specific value. In addition, the
system model must be embedded in the FHCOP through constraints replicating the GRU
equations.

Constraints can be of two types. First, "hard" constraints must be always satisfied: for
instance, the control variables cannot violate their bounds since they are a design choice
(the result of the optimization procedure). On the contrary, variables like system outputs
can be sometimes allowed to violate their boundaries because of the effects of disturbances.
These constraints are implemented as "soft" by means of suitable slack variables [46].

In the AROMA network MPC problem, at time instant t ∈ T , the following state, control
variable, output, disturbance and slack variables constraints are deployed.

State constraints: the states value is constrained to stay in between a minimum and a
maximum (± 1, because of the neural network normalization requirements). In addition,
at the beginning of the prediction horizon, the states must be equal to the value measured
by the observer, whereas subsequently they must be set to the value predicted by the GRU
non-linear equation, see equations (4.1).

xmin(k) ≤ xl(k) ≤ xmax(k), ∀l ∈ {1, .., nstates},∀k ∈ {1, .., N + 1}
xl(k = 1) = xobs,l(t), ∀l ∈ {1, .., nstates}
x(k + 1) = z(k) ◦ x(k) + (1− z(k)) ◦ ϕ(Wru(k) + Urf(k) ◦ x(k) + br),

∀k ∈ {1, .., N}

(4.1)

Control variable constraints: the boiler reference temperature, being the control vari-
able, must be "hardly" constrained between its limits. In particular, its lower bound
changes over time, i.e. in the daytime (from 7 a.m. to 7 p.m.) it is stricter than at night
(see Figure 4.5). In fact, during the day the water use is greater than during night, hence a
higher boiler temperature is required. In addition, the latter is allowed to modify its value
from one control period to another at most by ± 5◦C, since in real heating systems the
temperature cannot abruptly change in an extensive way. However, it can never exceed

4| Model Predictive Control using Physics-based Neural Networks 81

85◦C, because of pipelines safety conditions, see equations (4.2).

T boiler
min,ref (k) ≤ T boiler

ref (k) ≤ T boiler
max,ref (k), ∀k ∈ {1, .., N}

∆minT
boiler
ref (k) ≤ T boiler

ref (k)− T boiler
ref (k − 1) ≤ ∆maxT

boiler
ref (k), ∀k ∈ {1, .., N}

(4.2)

Output constraints: the load supply temperatures are bounded through soft con-
straints, since there may be some transient periods in which the latter are slightly vi-
olated but this non-compliance is of minor relevance. Moreover, the return temperature,
overall mass flow rate and boiler power can "hardly" vary between their limits, which are
however not too strict because of network design, hence slack variables are not needed.
Similarly to the control variable, the lower bounds of the supply temperatures and of the
overall return temperature change over time (see Figure 4.5) for a better functioning of
the network. To sum up, only the supply temperatures are softly constrained given that
the other outputs never violate their wide bounds (nslack = nload). Obviously, it could
be possible to add slack variables to all output constraints, but in order to reduce the
amount of optimization variables we confine the use of soft constraints only where strictly
needed. In addition, the boiler power must always fulfil the physical equation that relates
it to the mass flow rate and the difference between the supply temperature and the return
one. Finally, all outputs are constrained to be equal to the value predicted by the neural
network model, see equations (4.3).

T s
min(k)− si ≤ T s

i (k) ≤ T s
max(k) + si, ∀i ∈ {1, .., nload}, ∀k ∈ {1, .., N}

T r
min(k) ≤ T r(k) ≤ T r

max(k), ∀k ∈ {1, .., N}
ṁmin,r(k) ≤ ṁr(k) ≤ ṁmax,r(k), ∀k ∈ {1, .., N}
P boiler
min (k) ≤ P boiler(k) ≤ P boiler

max (k), ∀k ∈ {1, .., N}
P boiler(k) = cpṁr(k)(T

boiler
ref (k)− T r(k)), ∀k ∈ {1, .., N}

y(k) = Uox(k) + bo, ∀k ∈ {1, .., N}

(4.3)

Disturbance constraints: as anticipated, at the beginning of the prediction horizon of
each optimization step, the loads power is set to the actual demand at current time t ∈ T ,
assuming it is measurable, while the following values along N are constrained to be equal
to the disturbance forecasting, see equations (4.4).

P load
i (k = 1) = P load

i,real(t), ∀i ∈ {1, .., nload}
P load
i (k + 1) = P̃ load

i (τ + 1), ∀i ∈ {1, .., nload},∀k ∈ {1, .., N − 1},
∀τ ∈ {t, .., t+N · Tsampling − 1}

(4.4)

82 4| Model Predictive Control using Physics-based Neural Networks

Slack variables constraint: as explained above, there are only five slack variables,
one for each load supply temperature. Because of their definition, they must always be
non-negative, see equation (4.5).

sm ≥ 0, ∀m ∈ {1, .., nslack} (4.5)

4.3.5. Cost Function

Control performance, apart from the model accuracy, is also dependent on the local
optimization problem, which can be solved by either analytical or numerical solutions
[93]. The solution depends indeed on the structure of the cost function (J), which defines
what are the objectives of the optimization problem. A correct choice of J is crucial:
because of the presence of non-linear constraints, the optimization problem may get stuck
in a local minimum, whereas an appropriate objective function increases the likelihood
of ending up in a global solution [26]. As anticipated, we aim at keeping the problem as
simple as possible, and thus we could synthesize its three goals as follows:

• the first objective is to minimize the electrical cost of the boiler, so as to make it
operate in efficient conditions;

• the second objective is to discourage significant variations of the boiler temperature
and of the furthest user’s supply temperature from a reference value, i.e. T̄ = 75◦C

(terminal cost). In this way, the controller avoids changes in the control action when
not needed;

• the third objective is to minimize the slack variables, so that the soft constraints
are violated only when strictly necessary.

Consequently, the complete cost function reads as

min
Σ(1),..,Σ(N)

J =
N∑

k=1

(γelectric(k) · P boiler(k)) +

nslack∑

m=1

(γslack,m · sm)+

+γu(T
boiler
ref (N)− T̄)2 + γy(T

s
5 (N)− T̄)2

(4.6)

Specifically, P boiler is expressed in kilowatt and multiplied by a time constant to get
kilowatt-hour, whereas γelectric is the vector containing the electrical cost throughout the
day (e/kWh). Typically, this price varies a lot depending on the time of the day and
of year. For instance, because of the 2022 energy crisis, in Italy the electrical cost has
increased up to peaks of 500% with respect to 2021. However, for this illustrative MPC

4| Model Predictive Control using Physics-based Neural Networks 83

problem we could simply use an average daily trend of such a cost, as depicted in Figure
4.33. From the plot it is evident that during the most active times of the day, such
as morning and evening, the price rises. In addition, it is interesting to notice that in
southern regions where renewable energies are widely exploited the cost falls, for instance,
in the afternoon because of the presence of solar energy.

4 8 12 16 20 24

Time [h]

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.3: Daily electrical cost. Data extracted from an Italian average of January 2023.

Furthermore, γslack, γu and γy are tuning parameters that weigh the corresponding terms
in J in order to assign them the correct importance in the cost function. They have been
tuned experimentally and their values are reported in Table 4.2.

Finally, it is worth recalling that at time step k the solution of the optimization problem
is U(k|k) = [u(k|k)T , ..., u(k+N −1|k)T]T , where actually only its first element is applied
to the system as control action, according to the Receding Horizon principle [82]. At the
next time instant, the model is re-initialized in the observed state and the entire procedure
is repeated [10].

4.3.6. Computational Effort Reduction

As anticipated, MPC is a complex yet efficient algorithm used to solve non-linear program-
ming problems, in our case through the interior point search filter method. However, the
computational cost, in particular when handling big systems such as thermal networks,
is definitely expensive and the resolution may require several hours. Indeed, not only the

3https://www.mercatoelettrico.org

84 4| Model Predictive Control using Physics-based Neural Networks

optimization problem must handle a lot of optimization variables, but the system dynam-
ics constraints contain sigmoid and hyperbolic tangent functions, which are typically not
really manageable.
In order to relieve such effort, some strategies can be adopted. For example, as already
explained in Chapter 3, the PB-GRU states have been reduced from 89 to 54 (see Section
3.7). However, other tactics are embraced so as to lighten the computational burden.

4.3.6.1. Initialization

Since, as mentioned, Ipopt is a local solver, the computing time and solution optimality
heavily depend on the initial conditions [61].
A simple but rather effective strategy to fasten a bit the non-linear optimization problem is
to initialize at each step the optimization variables with the corresponding values predicted
at the previous step (warm start). In particular, this is done for states, inputs, outputs
and for the dual variables related to the constraints problem.

4.3.6.2. Parameters Settings

The first important parameter to choose when dealing with any MPC problem is the pre-
diction horizon (N): it is the time window throughout which the system is simulated
and the cost function is evaluated [10]. In general, it is suggested to set N to cover the
settling time of the process. Moreover, it obviously depends on the adopted sampling
period. However, the number of control inputs (and of optimization variables as well) is
proportional to N , thus the problem can become very large and time consuming [46].
Concerning the case studied in this thesis, thermal networks are typically slow-transient
systems and the longest settling time belongs to temperatures, with a value between two
and three hours. Moreover, being the electrical cost highly time-varying, we aim at ex-
tending N so that the controller is able to foresee significant changes in such price.
To wrap up, considering the trade-off between problem complexity and prediction accu-
racy, a reasonable selection for the prediction horizon value could be six hours, i.e. 72
steps, with Tsampling = 5 min.

Another fundamental parameter is the sampling time, whose choice in a linear setting
should be based on the Shannon theorem and on the (required) crossover bandwidth in
closed-loop [46].
As described in Section 3.7, the sampling period used to collect system samples has
been increased from one to five minutes, without altering the identification performance.
This trick is particularly helpful when working with large MPC problems: in this way,

4| Model Predictive Control using Physics-based Neural Networks 85

it is possible to raise the prediction horizon while still having a reasonable amount of
optimization variables. For instance, if the desired N is 6 hours, when the sampling
time is one minute the number of prediction steps is 360 (6h·60min/1min). On the
other hand, when the sampling time is five minutes the number of prediction steps is
72 (6h·60min/5min). Clearly, this represents a major simplification in the optimization
problem, having one fifth of optimization variables.

Finally, Ipopt allows to choose some useful settings, such as acceptable tolerances, max-
imum number of iterations or maximum CPU time. In detail, all these parameters are
kept at their default value, whereas the maximum number of iterations is set to 10000
and the absolute tolerance on the complementarity conditions is fixed at 0.00001.

To sum up, all the main optimization parameters are reported in Table 4.2.

86 4| Model Predictive Control using Physics-based Neural Networks

Symbol Description Value SI unit
γelectric Electrical cost Figure 4.3 [e/kWh]

γslack Slack variables weight 1 · 103 -

γu Input weight 1 · 102 -

γy Output weight 1 · 102 -

∆maxT
boiler
ref Boiler temperature difference upper bound +5 [◦C]

∆minT
boiler
ref Boiler temperature difference lower bound -5 [◦C]

ṁmax,r Mass flow rate upper bound 25 [kg/s]

ṁmin,r Mass flow rate lower bound 2 [kg/s]

N Prediction horizon steps 72 -

Nb Blocking strategy steps 6 -

niterations Number of iterations 10000 -

nload Amount of loads 5 -

nslack Amount of slack variables 5 -

nstates Amount of states 54 -

P boiler
max Boiler power upper bound 1 · 107 [W]

P boiler
min Boiler power lower bound 1 · 103 [W]

T Overall simulation time 86400 [s]

T boiler
max,ref Boiler temperature upper bound 85 [◦C]

T boiler
min,ref Boiler temperature lower bound {65, 70} [◦C]

T s
max Load supply temperatures upper bound 85 [◦C]

T s
min Load supply temperatures lower bound {65, 70} [◦C]

T r
max Return temperature upper bound 75 [◦C]

T r
min Return temperature lower bound {40, 45} [◦C]

Tsampling Sampling time 300 [s]

xmax State upper bound +1 -

xmin State lower bound -1 -

Table 4.2: Main optimization parameters.

4| Model Predictive Control using Physics-based Neural Networks 87

4.3.6.3. Blocking Strategy

An effective strategy to reduce the problem complexity is the so-called "blocking strat-
egy".
Because of the aforementioned complexity-accuracy trade-off, we decided to set the sam-
pling time to five minutes. As a consequence, the observer and the optimization algorithm
should work every five minutes, simultaneously. However, it is well known that the tem-
perature is characterized by a slow transient, thus it is not very cunning to change the
control variable in such a short time. Therefore, if MPC is executed, for instance, every
half an hour and accordingly the boiler reference temperature is kept constant in this
period of time, the amount of control variables to optimize is much lower than if they
were computed every five minutes.

To sum up, by fixing the control variable for thirty minutes (Nb = 30min·60s/300s = 6
steps), a new constraint must be added:

T boiler
ref (κ+ (ξ − 1)Nb) = T boiler

ref (κ+ (ξ − 1)Nb + 1),

∀κ ∈ {1, .., Nb − 1},∀ξ ∈ {1, .., N
Nb

− 1}
(4.7)

For a better understanding, an illustrative scheme to describe how the blocking strategy
works is reported in Figure 4.4.

k k+1 k+2 k+𝑁𝑏 k+4 k+5 k+2𝑁𝑏 k+3𝑁𝑏k+7 k+8

N

u(k)

Figure 4.4: Schematic representation of the blocking strategy. N is the prediction horizon,
Nb is the number of steps in which the control variable u(k) is blocked.

88 4| Model Predictive Control using Physics-based Neural Networks

4.3.7. State Observer

As anticipated, the use of the GRU network for model predictive control purposes calls
for the availability of a plant state estimate. Indeed, in a real case scenario, it is not
possible to measure at each time instant a very large number of variables [61].

An observer is a dynamical system able to estimate state x̂ and output ŷ [9]. Many
popular observers could be here implemented, such as Kalman Filter (KF), Extended
Kalman Filter (EKF) or more simple ones replicating the system dynamics and having an
innovation term. Typically, a suitable tuning of the state observer gain guaranteeing the
convergence of the state estimate can be found solving the stationary Riccati equation,
to learn more about it see [46].
However, since countless examples can be found in literature, such as [9–11], and the state
observer complexity is out of the thesis scope, a plain open-loop observer replicating the
model dynamics by means of the PB-GRU non-linear equations is appropriate. Recalling
Section 2.5.2, the observer equations are given by (4.8), where actually only states are
used by the MPC block as input. Ultimately, the underlying hypothesis that allows us to
exploit an open-loop observer is the implicit stability property of the GRU model [10].

{
x̂k+1 = ẑk ◦ x̂k + (1− ẑk) ◦ ϕ(Wruk + Urf̂k ◦ x̂k + br)

ŷk = Uox̂k + bo
(4.8)

4.4. Optimization Results

Finally, the results of the above explained MPC algorithm can be examined. In detail,
the system has been simulated for one day with a prediction horizon of six hours. Once
again, the aim of the FHCOP is to optimally control the AROMA network through
an MPC regulator so that the boiler electrical cost is minimized, while fulfilling technical
constraints. This simulation, which exploited the PB-GRU equations both for the FHCOP
and for the observer, required a resolution time of fifty-two minutes. The main variables
behaviour is reported in Figure 4.5.

All computations are done in MATLAB R2022a using CasADi for automatic differentia-
tion, through an Intel Core i7-1195G7 processor.

4| Model Predictive Control using Physics-based Neural Networks 89

200 400 600 800 1000 1200 1400

65

70

75

80

85

(a) Boiler reference temperature

200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

(b) Boiler power

200 400 600 800 1000 1200 1400

65

70

75

80

85

(c) Load supply temperatures

200 400 600 800 1000 1200 1400

40

45

50

55

60

65

70

75

(d) Load return temperatures

200 400 600 800 1000 1200 1400

0

5

10

15

20

25

(e) Overall mass flow rate

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(f) Load mass flow rates

Figure 4.5: PI-GRU-based MPC optimization results. When more variables are plotted
in the same graph, the first user’s variables are represented in blue, in purple the second’s,
in red the third’s, in green the fourth’s, in yellow the fifth’s and in light-blue the overall
return temperature (d). The constraints are depicted in black. The large boundaries of
the boiler power (b) are not displayed to have a better close-up.

As visible from the previous plots, the boiler reference temperature never exceeds its
bounds, correctly. In addition, because of the blocking strategy, it changes its value every
thirty minutes. Then, it is clear that when the electric cost is expensive, the optimizer
tends to minimize T boiler

ref so that the difference between supply and return temperature is
minimized in J . By contrast, when the price falls, MPC increases the boiler temperature,
thanks to its predictive ability. In fact, it is able to forecast when it is more convenient
to pre-charge the network, i.e. when γelectric is low, in view of subsequent periods where

90 4| Model Predictive Control using Physics-based Neural Networks

the cost will rise and hence the network will exploit the previously stored hot water.
As expected, the load supply temperatures follow the trend of the control variable. In
particular, they never violate the limit, not making use of the slack variables.
As far as the return temperatures is concerned, they are always largely complying with
the boundaries (hard constraints), having a pretty limited dynamics.
Similarly, the overall mass flow rate never exceeds its bounds and, correctly, the trend of
the single mass flow rates follows the loads power demand.
Finally, both the boiler temperature and its power are coherent with the overall network
power request (see Figure 4.2), with a peak of roughly 1.3 MW of P boiler.
In the end, MPC manages to accurately achieve the cost function objectives, in a reason-
able amount of time.

Lastly, it is interesting to notice how the optimization performance changes depending on
the model adopted. For instance, if instead of using the 54-state PB-GRU one exploits,
both in the observer and in the FHCOP, the 54-state standard GRU, the plots reported
in Figure 4.6 are obtained.

It is worth highlighting that the MPC that makes use of the standard GRU model takes
more time than the one exploiting PB-RNNs. Indeed, this latter model is more accurate
and hence the predictions are more reliable and precise, resulting in a faster execution. The
average and maximum resolution time per iteration, together with the overall resolution
time, are reported in Table 4.3. Another interesting point regards the cost function. By
comparing the value of the boiler electrical cost obtained through the PI-GRU-based MPC
and the one obtained through the standard GRU-based MPC, we could notice that the
latter takes a higher value (see Table 4.3). In other words, a more precise model results
in cost savings too.

Model Cost (e) Average time/iter Maximum time/iter Total time
PB-GRU 4378,8 1’6” 5’35” 52’

Standard GRU 4534,8 1’28” 9’27” 1h11”

Table 4.3: Comparison between the performance of PI-RNN-based MPC and standard
RNN-based MPC. The electrical cost, the average and maximum resolution time per
iteration, together with the total resolution time, are reported for the two models.

4| Model Predictive Control using Physics-based Neural Networks 91

200 400 600 800 1000 1200 1400

65

70

75

80

85

(a) Boiler reference temperature

200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

(b) Boiler power

200 400 600 800 1000 1200 1400

65

70

75

80

85

(c) Load supply temperatures

200 400 600 800 1000 1200 1400

40

45

50

55

60

65

70

75

(d) Load return temperatures

200 400 600 800 1000 1200 1400

0

5

10

15

20

25

(e) Overall mass flow rate

200 400 600 800 1000 1200 1400

1

1.5

2

2.5

3

3.5

4

4.5

5

(f) Load mass flow rates

Figure 4.6: Standard GRU-based MPC optimization results. When more variables are
plotted in the same graph, the first user’s variables are represented in blue, in purple the
second’s, in red the third’s, in green the fourth’s, in yellow the fifth’s and in light-blue
the overall return temperature (d). The constraints are depicted in black.

4.5. Conclusions

In this chapter a well-established control technique has been implemented, namely model
predictive control. However, differently from standard MPC algorithms, it was used a
model identified through physics-based recurrent neural networks both in the formulation
of the finite horizon control optimization problem and in the observer design. In particular,
as expected, a more accurate model yields better optimization and control results: faster
execution, less constraints violation and cost savings.

93

5| Lifelong Learning

5.1. Chapter Overview

This chapter focuses on the long-term monitoring of the district heating system under in-
vestigation (AROMA network). After pointing out the motivations and objectives behind
lifelong learning, a brief literature review on the topic is explored. Afterwards, an aggre-
gate algorithm for the supervision of a DHS is proposed. The strategy actually develops
into two branches, depending on which type of change has been detected: typically, it can
be either a structural modification or an operating conditions shift. For each scenario,
the corresponding solving algorithm and identification results are reported.

5.2. Lifelong Learning Overview

Humans and animals have the ability to continually acquire and fine-tune knowledge
throughout their lifespan, thanks to a sophisticated set of neurocognitive mechanisms
that collectively contribute to the development and specialization of our sensorimotor
skills as well as to long-term memory consolidation. Lifelong learning is thus defined as
the ability to continually learn over time by accommodating new knowledge while pre-
serving previously learned experiences. Similarly to nature, lifelong learning capabilities
are crucial for computational systems and autonomous agents interacting in the real world
and processing continuous streams of information [63].
In machine learning indeed, after the training procedure is completed, the agent’s knowl-
edge is fixed and unchanging. Consequently, if the agent has to be applied to a different
task it must be re-trained (fully or partially), again requiring a very large number of new
training examples. By contrast, biological agents exhibit a remarkable ability to learn
quickly and effectively from ongoing experience [57]: their natural adaptive skill is object
of growing interest in the machine learning community.

94 5| Lifelong Learning

5.2.1. Motivations and Objectives

In the long run, it is very likely that throughout the lifespan of a system various changes
occur, such as structural adjustments or new operating conditions. As a consequence,
the system model initially employed does no longer constitute a precise description of
the plant. Thereby, it comes the need to adapt the original model to changes, while still
preserving previously gained knowledge.

Lifelong learning is a well-established challenge for machine learning since the continual
acquisition of incrementally available information from non-stationary data distributions
generally leads to the so-called "catastrophic forgetting" or "interference", i.e. train-
ing a model with new information may interfere with previously learned knowledge [63].
Actually, once new data are available, there is the risk that the latter completely over-
write long-standing information. In order to overcome catastrophic forgetting, the neu-
ral network must, on the one hand, show the ability to acquire continuous information
through which refining existing knowledge and, on the other hand, prevent the new input
from significantly interfering with past data [63]. In literature, this is called the "sta-
bility–plasticity dilemma". The basic idea is that an artificial intelligence system needs
plasticity to integrate new information, but also stability to prevent forgetting previous
knowledge [15].

Ultimately, the lifelong learning problem is particularly relevant when the model is used
to synthesize a model-based control law. Indeed, adaptation would typically be required
to preserve the closed-loop stability characteristics as well as to maintain performance
throughout the plant lifespan [12]. In fact, the ability to automatically fit variations in
plant dynamics and environment has made adaptive controllers increasingly important
for various applications [31].

5.2.2. Plasticity and Lifelong Learning in Literature

Lifelong learning is a matter of great interest in literature: almost every system whose
lifespan is significantly long must be constantly monitored so as to update, if necessary,
its model and to maintain an efficient control strategy.

For detailed reviews, the reader is referred to [63, 76]. In [76] Soltoggio et al. mainly de-
scribe the implementation and use of Evolved Plastic Artificial Neural Networks (EPANNs),
which include both innate properties and the ability to change and learn in response to
experiences in different environments and problem domains. This type of networks is
inspired by a large variety of ideas from biology: plasticity is indeed an essential feature

5| Lifelong Learning 95

of the brain for neural malleability at the level of cells and circuits [63]. Typically, in
EPANNs, learning rules are functions that change the connection weight w between two
neurons. An interesting example of plastic neural networks can be found in [57, 83] where
Miconi et al. mostly make use of the so-called Hebbian plasticity rule. In practice, a
connection between any two neurons i and j has both a fixed and a plastic component.
The fixed part is merely a traditional connection weight wi,j, whereas the plastic part is
stored in a Hebbian trace Hebbi,j, which varies during a lifetime according to ongoing
inputs and outputs. Indeed, plasticity, just like connection weights, can be optimized by
gradient descent in large recurrent networks with Hebbian plastic connections. An im-
portant aspect of differentiable plasticity is its extreme ease of implementation, requiring
only a few additional lines of code on top of a standard network implementation. Other
examples of plasticity rules are explained in [72], such as the Oja’s rule and the ABCD
plasticity. To sum up, the basic idea behind plasticity is to include in the problem for-
mulation a novel loss function so as to update the neural network weights, as discussed
in detail in [15, 95].

As far as control-oriented lifelong learning is concerned, a detailed review is presented in
[32], where Hewing et al., apart from describing a number of models used in literature
for control purposes, the controller design and the safety issue, show various learning-
based MPC schemes that aim at estimating the model uncertainty set directly from data,
potentially adjusting it over time to reduce conservatism. In a nutshell, these techniques
make use of an explicit distinction between a nominal system model and an additive
learned term accommodating uncertainty.
Moreover, a further significant example of lifelong learning of recurrent neural networks
for control design is represented by [12], where it is taken into account the case in which
the plant model has constant or slowly-varying parameters. The authors propose an
approach based on the Moving Horizon Estimation (MHE), i.e. an optimization-based
strategy widely investigated and used by the control community.
In addition, in [5] Bemporad investigates the use of extended Kalman filtering to train
recurrent neural networks with rather general convex loss functions and regularization
terms on the network parameters.
Another approach used for model predictive control purposes is the one proposed in [31],
where the adaptive neural network mechanism is used to compensate the steady-state
error due to parameters variations and to update the weights of the neural network model
online.
Additionally, some interesting examples of error-triggered online model identification can
be found in [2, 90]. In practice, when the prediction error exceeds a pre-specified threshold,

96 5| Lifelong Learning

a new identification is performed by using the most recently generated input/output data
and by initializing the new weights with their previous values. This online identification
can be used to update an empirical model when significant plant-model mismatch is
detected because the region of operation shifts and the current model no longer captures
the non-linear dynamics. The just mentioned method reveals both an advantage and a
disadvantage: the computation time for updating an RNN model is significantly reduced
due to the small size of the newly collected dataset. However, because of insufficient data
in the new training dataset, the updated RNN models are not guaranteed to approximate
non-linear dynamics subject to disturbances in the entire operating region. A similar
issue and approach is discussed in [94], where the authors employ an error-triggered
mechanism to activate the quantification of modelling uncertainties and to update the
physics-informed recurrent neural network models accordingly.
Finally, a noteworthy example of continual learning that makes a distinction among three
different scenarios, namely task-incremental, domain-incremental and class-incremental
learning, is discussed in [85].

5.3. A Lifelong Learning Algorithm for the Supervi-

sion of a DHS

Now that the basic concepts of lifelong learning have been explored, it is possible to focus
on the specific case study analysed in this thesis. The AROMA network is indeed a
simplistic but rather effective example on which a number of meaningful experiments can
be conducted.

In general, after an initial phase of model identification (Chapter 2 and 3) and control
design tuning (Chapter 4), a district heating system is ready to work in what we may call
"normal" or "nominal" conditions for a more or less extended period of time. However,
in the long run (after some months or years), it is very likely that the system undergoes
some changes. For instance, there may be some structural adjustments such that on pipe
length or insulation, or the plant working conditions may be modified in accordance to
the period of the year.

By this time, it should be clear that the initial model on which the control design was based
is no longer able to correctly capture the plant dynamics and hence some adjustments
must be deployed.

5| Lifelong Learning 97

5.3.1. General Algorithm Description

In this section we propose a novel methodological algorithm to deal with model uncertain-
ties. As anticipated, in the longer term, a thermo-hydraulic system such as the AROMA
network can undergo mainly two types of changes. First, for instance, there may be a
structural modification in the pipe length, diameter, insulation thickness, thermal con-
ductivity, or even there may be an alteration in the number of users, in the differential
pressure of the pump and of the expansion vessel. This scenario, intuitively, will result in
a drastic system model modification. Second, a DHS could also exhibit a change in the
operating conditions with respect to the nominal ones. Clearly, if the training procedure
of the original model has been performed appropriately, the training dataset should in-
clude a large variety of working conditions, covering all the possible periods of the year.
However, it may occur, for instance, that a winter is abnormally cold, i.e. the power
consumption would be particularly high and out of the original training set range.

These considerations lead us to develop an algorithm through which it is possible to
constantly monitor the AROMA network status and to make the proper adjustments
depending on the encountered scenario.
For the sake of clarity, we might call the new data available, for instance at the end
of a closed-loop daily operation, as "current data", so as to distinguish them from the
"training data" originally employed to identify the primary system model.

The first step is to compute, at the end of a fixed monitoring period (e.g. day or week)
and for each system output variable, the root mean square error (RMSE) between the
measured outputs and the ones predicted by the physics-based gated recurrent unit model.
If the RMSE associated to each variable is lower than its corresponding threshold then
the original PB-GRU model is still able to capture the system dynamics: no modification
is required. By contrast, if at least one RMSE exceeds that threshold, this is an alarming
signal indicating that something has changed.
In particular, the RMSE threshold of each variable is computed as follows. Let us
suppose that we collect a weekly set of data in normal conditions, i.e. at the beginning of
the system functioning where for sure neither a plant change nor a working status shift
occurred. For each output variable it is necessary to compute the error committed by
the existing PB-GRU model, i.e. the difference between the predicted output and the
corresponding measured value. By considering the error values over time and by plotting
the associated histogram, it is possible to notice that they typically have a Gaussian
distribution (see Figure 5.1).

98 5| Lifelong Learning

Figure 5.1: Example of the normal distribution of a system variable error: T s
5 plant-model

mismatch. The number of observations is 2000, i.e. around seven days sampled every five
minutes.

Therefore, for each variable, we find out the RMSE threshold by computing the 90th

percentile of the normal distribution, i.e. the error value e where the probability of being
less than e is 90%. In fact, a percentile is defined as the value in a normal distribution that
has a specified percentage of observations below it. In other words, this means finding
out the error value above which only the 10% of observations is distributed (histogram
tails).

At this point, as soon as the RMSE computation detects an anomaly, we need to figure
out its cause. In order to distinguish whether a change in the plant or in the operating
conditions occurred, we can exploit the so-called Mahalanobis distance (T 2). Thanks to
its whitening characteristics, it is an extremely valuable measure in multivariate data
analysis and has many applications including cluster analysis, outlier detection, text clas-
sification, Bayesian inference and image processing [62]. The basic idea is to verify if the
current input set is "statistically close" to the input training set. In a nutshell, if this
is the case, then the operating conditions are included in the original training range and
hence a modification in the plant took place. By contrast, if the current input dataset is
"statistically far" from the input training set, then the working status has changed.

Firstly, it is necessary to normalize each variable contained in the current and in the train-
ing dataset. In particular, for each input and output variable, the mean and the variance
are computed using the training (or benchmark) dataset. These mean and variance values
are therefore used to normalize both the variables contained in the training set and the
ones included in the current dataset.

5| Lifelong Learning 99

Secondly, considering the training set defined by the matrix X of normalized data and
with covariance matrix S, it is possible to define the statistical (or Mahalanobis) distance
T 2 of the vector of measurements x from the training set as T 2 = x′S−1x. In depth,
since the expected mean and variance are estimated from data, the ellipsoidal confidence
region is defined by T 2 ≤ T 2

α = m(n−1)
(n−m)

Fα(m,n−m), where α is the significance level, m
is the number of independent Gaussian random variables xi with null expected value and
unitary variance, n is the number of observations and Fα(m,n−m) is the upper 100α%

of the F distribution with m and n−m degrees of freedom.

In conclusion, we can say that if the Mahalanobis distance between the current inputs
and the training ones exceeds its threshold, then the actual operating conditions are
statistically far from the original ones. In the opposite case, there has been a change in
the plant structure as the input values are within the training set boundaries (see Figure
5.2). To this end, it should be evident that in order to compute the Mahalanobis distance
it is necessary to divide inputs (u) and outputs (y) and then to take the average of the
distances related to the different variables in the two categories. In this way, T 2(u) is a
clear indicator of a change of operating conditions: a new working status derives from a
different power consumption whose information is contained in u (or, in our case study, in
P load
i). Instead, T 2(y) can be seen as a simple indicator that the RMSE computation is

correct: both the calculation of RMSE and of T 2(y) is performed on the output variables
and thus they must be coherent.

More details concerning the statistical concepts discussed are thoroughly parsed in [30, 58].

𝑇2 ≤ 𝑇α
2

Operating conditions within the
confidence region

𝑇2 > 𝑇α
2

Operating conditions out of
the confidence region

𝑇α
2

𝑥1

𝑥2

Figure 5.2: Schematic representation of the ellipsoidal confidence region of T 2 in case of
two variables.

100 5| Lifelong Learning

Ultimately, thanks to this easy computation we can comprehend what kind of modification
occurred. At this stage, one should employ a different strategy according to the type of
scenario. First, if an alteration in the plant has taken place, then it is necessary to get a
novel model able to capture the new dynamics (see Section 5.3.2). Conversely, if we find
out that the working conditions have dramatically changed with respect to the nominal
ones, then it is convenient to add this new information to the existing model (see Section
5.3.3).

To sum up, the overall procedure is reported in Algorithm 5.1.

Algorithm 5.1 Lifelong Learning Algorithm for the AROMA network
1: Compute RMSEi ∀i ∈ {1, .., ny}
2: if RMSEi ≤ RMSEi ∀i ∈ {1, .., ny} then
3: do nothing
4: else if ∃i ∈ {1, .., ny}|RMSEi > RMSEi then
5: compute Mahalanobis distances
6: if (T 2(u) ≤ T 2

α(u)) ∧ (T 2(y) > T 2
α(y)) then

7: change in the plant: Moving Horizon Estimation
8: else if (T 2(u) > T 2

α(u)) ∧ (T 2(y) > T 2
α(y)) then

9: change in the operating conditions: additive uncertainty identification
10: end if
11: end if

For a better grasp, before entering into the details of each scenario, let us apply the
aforementioned algorithm to our case study by means of a numerical example.

First, it is necessary to compute the triggering thresholds. To this end, at the end of a
weekly closed-loop operation in nominal working conditions and without plant alterations,
we collect data and we compute, for each output variable, the RMSE between the nor-
malized measured system outputs and the ones predicted by the original PB-GRU having
54 states (nominal RMSE). It is worth recalling that the AROMA network variables we
are interested in are twenty-three: six inputs (mu = 6), that is, the boiler temperature
and the five power consumptions, and seventeen outputs (my = 17), i.e. T s

1 , T r
1 , ṁ1, T s

2 ,
T r
2 , ṁ2, T s

3 , T r
3 , ṁ3, T s

4 , T r
4 , ṁ4, T s

5 , T r
5 , ṁ5, T r, ṁr.

Starting from the nominal RMSE values, we calculate, again for each output variable, the
associated thresholds by means of the 90th percentile. The so-obtained thresholds vector
is RMSE = [0.0351, 0.0430, 0.0545, 0.0385, 0.0905, 0.1012, 0.0419, 0.0719, 0.0939, 0.0580,

0.0334, 0.0971, 0.0594, 0.0268, 0.0746, 0.0505, 0.1583].

5| Lifelong Learning 101

Furthermore, as far as the statistical distance is concerned, by consulting the F dis-
tribution table, we can find out the Mahalanobis distance triggering thresholds, always
distinguishing between input and output. It is reasonable to select a 90% confidence
interval, i.e. α = 0.1:

T 2
α=0.1(u) = 10.8388

T 2
α=0.1(y) = 26.2190

(5.1)

Now that the required thresholds have been computed, at the end of each monitoring
period (e.g at the end of the day) we should verify whether the RMSE thresholds are
exceeded or not. If this is the case, we therefore have to normalize the variables contained
both in the current daily dataset and in the original training set by using the mean and
the variance computed through the benchmark dataset variables. Once again, in order to
compute the Mahalanobis distances we shall split inputs and outputs and then take the
average of the distances related to the different variables in the two groups.

A remark: the computation of T 2 requires a much larger training (or benchmark) set than
the current dataset which we need to statistically evaluate. Indeed, the training set used
for this computation is made by 15200 samples (around 55 days of simulation sampled
every five minutes, see Chapter 3). By contrast, if a single daily operation is considered,
the current available data are 288 (again with a sampling time of five minutes).

Let us perform the just mentioned calculations in three different scenarios, over a daily
dataset:

• case 1: original plant and nominal operating conditions;

• case 2: modified plant and nominal operating conditions;

• case 3: original plant and operating conditions out of the training set.

In detail, the original plant is the one discussed in Chapter 1, whereas in the modified
plant a change is performed: the first pipe length is increased by 20% with respect to the
original one and the diameter is decreased by 20% with respect to its initial value (see
Section 5.3.2). Moreover, the nominal operating condition is represented by the AROMA
network usual power consumption (see Figure 1.10b). Conversely, in order to detect an
unusual working status, load profiles out of the original training set ranging from 30kW
to 420kW (see Figure 2.2b) are taken into account (see Section 5.3.3).

The values of the seventeen prediction RMSE are reported in Table 5.1, distinguishing
among the three different aforementioned scenarios. In addition, to make a clearer com-
parison, the RMSE thresholds are listed too. Additionally, in Table 5.2 the values of

102 5| Lifelong Learning

Mahalanobis distances both for input and for output are reported.

Threshold Case 1 Case 2 Case 3
T s
1 0.0351 0.0209 0.0177 0.0247

T r
1 0.0430 0.0157 0.1692 0.0227

ṁ1 0.0545 0.0218 0.1021 0.0331

T s
2 0.0385 0.0205 0.0166 0.0579

T r
2 0.0905 0.0244 0.2632 0.1033

ṁ2 0.1012 0.0315 0.1397 0.0432

T s
3 0.0419 0.0304 0.0295 0.0315

T r
3 0.0719 0.0174 0.2333 0.1984

ṁ3 0.0939 0.0269 0.2118 0.0627

T s
4 0.0580 0.0448 0.0617 0.0527

T r
4 0.0334 0.0159 0.1031 0.0567

ṁ4 0.0971 0.0573 0.2579 0.0778

T s
5 0.0594 0.0464 0.0660 0.0583

T r
5 0.0268 0.0107 0.0846 0.0490

ṁ5 0.0746 0.0443 0.2111 0.0720

T r 0.0505 0.0381 0.2149 0.1088

ṁr 0.1583 0.0564 0.3203 0.0630

Table 5.1: Comparison of RMSE in three different cases for each output variable. The
thresholds are highlighted in light-blue, whereas the values exceeding the corresponding
thresholds are highlighted in red.

Threshold Case 1 Case 2 Case 3
T 2(u) 10.8388 3.5477 3.5477 23.4386

T 2(y) 26.2190 14.5386 37.7028 161.8426

Table 5.2: Comparison of Mahalanobis distances in three different cases. The thresholds
are highlighted in light-blue, whereas the values exceeding the corresponding thresholds
are highlighted in red.

We can finally explain the three case studies reported in the previous tables more specif-
ically:

5| Lifelong Learning 103

• case 1: since none of the seventeen output variables exceeds its corresponding
RMSE threshold, the algorithm is not triggered. Accordingly, the Mahalanobis
distance thresholds are not crossed.

• Case 2: since fourteen RMSE thresholds are exceeded, it is necessary to compute
the Mahalanobis distance as well. In particular, being T 2(u) ≤ T 2

α(u) and T 2(y) >

T 2
α(y), the current inputs are within the original training range whereas the outputs

are outside. In conclusion, there has been a modification in the plant.

• Case 3: since six RMSE thresholds are exceeded, it is necessary to compute the
Mahalanobis distance as well. In particular, being T 2(u) > T 2

α(u) and T 2(y) >

T 2
α(y), the current inputs and outputs are out of the original training range. In

conclusion, there has been a modification in the operating conditions.

In the end, after figuring out in which case lies the actual system, it is possible to proceed
following a different strategy depending on the system status. The clear separation be-
tween the two scenarios is convenient for studying their different challenges and possible
solutions in isolation.

5.3.2. Plant Change Scenario

This section aims at giving an overview on how to proceed in case of plant change. As
anticipated, it is highly unlikely that, after some months or years of functioning, a DHS,
and, in general, every large thermo-hydraulic system, does not go through any adjustment.
For instance, because of the ongoing cities growth, it may be possible that some new users
are added to an existing district heating system. To this end, new pipes must be inserted,
resulting in an overall pipeline longer than the original one. Likewise, because of structural
reasons, there may be a modification in pipes diameter, insulation thickness or thermal
conductivity, or even there may be an alteration in the differential pressure of the pump
or of the expansion vessel.

As can be seen, these constructional alterations lead to a radical system modification. As
a consequence, the original model that has been formerly identified through a black-box
technique is no longer appropriate to describe the new plant dynamics and it must be
re-tuned.

Before introducing how to solve the just mentioned problem, we may visualize how the
dynamics of the system changes depending on its physical parameters. Let us consider the
case study analysed in this thesis, i.e. the AROMA network. A reasonable and effective
change could be to extend the first (both supply and return) pipe length by 20% with

104 5| Lifelong Learning

respect to its original value and to reduce the same pipe diameter by 20%. In this way, the
overall system dynamics should be severely modified: an extension in the first pipe length
and a shrinkage in the diameter should result in a slowed down system. This is clearly
evident in Figure 5.3, where, for the sake of brevity, it is reported only the behaviour of
the closest (first) and of the furthest (fifth) load variables (supply, return temperature and
mass flow rate), together with the overall return temperature and mass flow rate, both in
the case of old and new plant. In this daily closed-loop simulation, the control variable is,
as usual, the boiler temperature computed through the model predictive control algorithm
(see Chapter 4).

5| Lifelong Learning 105

200 400 600 800 1000 1200 1400

65

70

75

80

85

(a) First user supply temperature

200 400 600 800 1000 1200 1400

64

66

68

70

72

74

76

78

80

82

84

(b) Fifth user supply temperature

200 400 600 800 1000 1200 1400

55

56

57

58

59

60

61

62

63

64

65

(c) First user return temperature

200 400 600 800 1000 1200 1400

52

54

56

58

60

62

64

66

(d) Fifth user return temperature

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

4

(e) First user mass flow rate

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

(f) Fifth user mass flow rate

200 400 600 800 1000 1200 1400

54

55

56

57

58

59

60

61

62

63

64

(g) Return temperature

200 400 600 800 1000 1200 1400

4

6

8

10

12

14

16

18

(h) Return mass flow rate

Figure 5.3: Comparison between some AROMA network variables in the case of old plant
(blue) and new plant (red).

106 5| Lifelong Learning

5.3.2.1. Moving Horizon Estimation

In order to capture the new plant dynamics, we exploit an adaptation algorithm inspired
by Moving Horizon Estimators (MHE), as carefully described in [12].
Even though the system dynamics changes, we would like to preserve to some extent
the information contained in the original model, so as not to completely throw away
the results achieved so far. In fact, as already discussed, re-tuning the model when new
data are available can lead to the catastrophic forgetting problem, which occurs when
the knowledge previously embedded in the original model is discarded by the re-tuning
procedure itself, with consequent reduced description capabilities [12].

Let us consider a generic Recurrent Neural Network model in the form

{
xk+1 = f(xk, uk; Θ)

yk = g(xk, uk; Θ)
(5.2)

where k is the discrete time index, Θ is the vector of network parameters (weights and
biases) and x, u and y are, respectively, the state, input and output vectors.
The proposed algorithm is intended to be run periodically every N steps, where N is a
positive integer corresponding to the length of the time-window throughout which data
are collected from the system. For instance, if at the end of a daily operation and subse-
quent data gathering the triggering conditions are activated, the algorithm is run: N =

24h·60min/5min = 288, with Tsampling = 5 min. Therefore, we can periodically formulate
an optimization problem which seeks the parameters update that best explains the new
collected data. As a consequence, the model weights constitute an optimization variable,
denoted by Θ̂. The underlying MHE optimization problem, at the current time instant,
can be stated as

Θ̂∗ = argmin
Θ̂,x̂0

{J =
N∑

k=0

||yk − ŷk||2 + µ||Θ̂− Θ̄||2}

s.t. x̂0 = x̄0

x̂k+1 = f(x̂k, uk; Θ̂)

ŷk = g(x̂k, uk; Θ̂)

∀k ∈ {0, .., N}

(5.3)

where Θ̂∗ denotes the optimal solution to (5.3), whereas Θ̄ represents the vector of original
model weights. Clearly, the underlying assumption is that the network parameters are
constant over time. The convergence properties of the proposed MHE algorithm are

5| Lifelong Learning 107

proved in [12].
A few relevant considerations regarding this optimization problem are here listed:

• the cost function penalizes the mismatch between the actual measured output yk

and that of the new GRU model. By contrast, the second term of J discourages sig-
nificant deviations from the previously computed optimal solution Θ̄. Hence, the co-
efficient µ defines the trade-off between the need to improve the model performance
(µ small) and the necessity not to forget the information previously acquired, i.e.
to avoid catastrophic forgetting. In particular, in our example we can set µ = 0.1.

• The optimal solution Θ̂∗ represents the updated set of weights of the model (5.2).
Since the PB-GRU model is made of a large number of parameters, being charac-
terized by fifty-four states and six layers, we adopt the following strategy. The
optimization variable Θ̂ does not contain all the weights and biases character-
izing the neural network, but rather only the ones related to the output layer
of each GRU. This means that, given the overall GRU parameters vector Θ =

{Wr, Ur, br,Wz, Uz, bz,Wf , Uf , bf , Uo, bo}, the optimized one is plainly Θ̂ = {Ûo, b̂o},
for each GRU. This trick allows us to gain two benefits. First, the number of opti-
mization variables is dramatically reduced than in the situation where all parameters
are optimized. The original MHE algorithm discussed in [12] actually revealed a
scalability problem. In fact, if all the network parameters were optimized as in the
reference paper, having fifty-four states and six layers, we would probably end up
in a very large computational burden or even in an intractability of the problem.
However, thanks to the aforementioned simplification, the updated problem reso-
lution typically demands less than two hours of computation. Second, since the
parameters describing the interconnections among hidden layers are not optimized
but are fixed to their original value ("old" PB-GRU), the catastrophic forgetting
issue is effectively averted. Indeed, the information previously acquired through the
original training procedure is embedded in the hidden layers parameters, whereas
the information related to the current modified plant is stored in the new output
parameters vector Θ̂∗.

• The initial state vector is constrained to be equal to the state measured at time
k = 0 by the open-loop observer made by the original PB-GRU equations (see
Section 4.3.7). In this way, the computational effort is reduced and drift issues
related to state initialization are bypassed.

• x̂ and ŷ are randomly initialized. By contrast, Θ̂ is initialized using the values
contained in Θ̄ (old model parameters). This warm start trick allows a faster opti-

108 5| Lifelong Learning

mization procedure and prevents catastrophic forgetting.

• For computational reasons, all the optimization variables are bounded within certain
limits. In particular, x̂ and ŷ, being normalized, are constrained between ±1. By
contrast, Θ̂ is forced to stay around a neighbourhood of Θ̄, i.e. it can move away from
the original vector at most by ±∆ = ±0.5 (value empirically found). Once again,
these constraints ensure a faster optimization procedure and prevent catastrophic
forgetting.

5.3.2.2. Results

After the description of the Moving Horizon Estimation problem, we can here address a
practical example. It is worth reminding that the objective of this section is to find a
new set of network parameters to be employed in a novel model capable of describing the
dynamics of the plant whose first supply and return pipe has been modified (+20% in the
length and -20% in the diameter).

As in Chapter 4, the aforementioned MHE problem is implemented in MATLAB R2022a
and solved through CasaADi with the solver Ipopt. In particular, after a closed-loop
daily operation of the AROMA network, data are collected. Since several root mean
square errors between measured outputs and the ones predicted by the original PB-GRU
exceed their thresholds, the statistical distance is computed. T 2(u) does not overcome its
threshold and hence we can conclude that the operating conditions are regular whereas
there has been a modification in the plant (see Case 2 described in Section 5.3.1). In fact,
the inputs used for this simulation are the usual ones: the boiler reference temperature is
the one computed by the MPC algorithm and the power consumption is the nominal one
reported in Figure 1.10b.
At this stage, the MHE is performed by using the daily collected data (N = 288). The
optimization procedure took one hour and thirty-two minutes to return the optimized
network parameters (weights and biases of the six output layers).
In order to assess the algorithm performance, it is necessary to validate the new model
using a different input set with respect to the one employed in the optimization procedure.
However, the input values must be included in the training set boundaries so that their
statistical distance is within the T 2

α limits.
In Figure 5.4 the behaviours of the old and new model variables compared to the measured
ones are shown. In detail, for the sake of conciseness, it is reported just the trend of the
first and fifth user variables (respectively, the closest and the furthest with respect to
the heating station) and the overall return temperature and mass flow rate. Moreover,
in Table 5.3 the performance index evaluation is reported. In particular, since it has not

5| Lifelong Learning 109

been performed a re-training procedure but an optimization one, we may compare the
minimum, maximum and, instead of FIT, average R2 values (2.2).

200 400 600 800 1000 1200 1400

65

70

75

80

85

90

(a) First user supply temperature

200 400 600 800 1000 1200 1400

65

70

75

80

85

(b) Fifth user supply temperature

200 400 600 800 1000 1200 1400

55

56

57

58

59

60

61

62

63

64

65

(c) First user return temperature

200 400 600 800 1000 1200 1400

50

52

54

56

58

60

62

64

66

68

(d) Fifth user return temperature

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(e) First user mass flow rate

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

(f) Fifth user mass flow rate

200 400 600 800 1000 1200 1400

52

54

56

58

60

62

64

66

(g) Return temperature

200 400 600 800 1000 1200 1400

4

6

8

10

12

14

16

18

(h) Return mass flow rate

Figure 5.4: Comparison among the variables identified by the old PB-GRU (red), by the
new PB-GRU (yellow) and the measured ones (blue), in case of a novel plant.

110 5| Lifelong Learning

Model R2
min[%] R2

max[%] R2
avg[%]

Original PB-GRU -1.4128·103 99.3454 -117.4485

New PB-GRU 75.1967 99.4572 91.6002

Table 5.3: Comparison of the R2 values between the variables identified by the original
and by the new model.

As clearly visible from the previous plots and table, the model identified through the
MHE algorithm outperforms the old one. Indeed, the two neural networks have the usual
physics-based structure, with the same number of neurons and hidden layers. However,
because of the structural modification in the first pipe, the old PB-GRU is no longer
able to correctly capture the non-linear dynamics of the novel plant (R2 values small).
By contrast, the PB-GRU characterized by the usual interconnections parameters and by
new output weights and biases is able to fit well the novel system status (R2 values high).
Actually, by computing again the different RMSE values between measured and new
predicted outputs, we find out that all the seventeen errors are below their corresponding
triggering thresholds.
In addition, it is convenient to test this new model in closed-loop and to compare it with
the case in which the old model is employed. Clearly, the plant that is controlled by the
model predictive regulator is the modified one. As a result, we can notice that, even if
the two cost functions (represented by the boiler electrical cost) take approximately the
same value, the overall simulation time is fairly different. In fact, the MPC algorithm
that makes use of the new model (both in the finite horizon control optimization problem
and in the observer) requires a total simulation time of one hour and twenty-six minutes.
On the other hand, the MPC algorithm that exploits the old model takes two hours and
twelve minutes to complete the daily optimization.

To sum up, this lifelong learning solution is definitely suitable in the event of a structural
system change: the algorithm is able to improve the identification performance of the old
model and, overall, of the model predictive control.

However, as anticipated, the computational effort required by the MHE algorithm is not
negligible. Even though the example presented required an optimization time of roughly
one hour and half, the latter explodes with the number of optimization variables. For
this reason, the computations have been made on a set of data collected at the end of
a single day. Larger datasets, instead, would require a much longer resolution time and
sometimes they would be even intractable. This computational issue leads us to adopt a
naive but rather effective variation of the original MHE algorithm proposed in [12]. In

5| Lifelong Learning 111

practice, we remove from the cost function the minimization of the mismatch between the
original network parameters and the new optimized ones. In place of this term, we add
a constraint on the difference between the output optimization variables and the outputs
predicted by the old PB-GRU. This additional constraint aims at avoiding catastrophic
forgetting by limiting the mismatch between new and old output variables.
We can synthesize the above-mentioned optimization problem as follows:

Θ̂∗ = argmin
Θ̂,x̂0

{J =
N∑

k=0

||yk − ŷk||2}

s.t. x̂0 = x̄0

x̂k+1 = f(x̂k, uk; Θ̂)

ŷk = g(x̂k, uk; Θ̂)

||ŷk − ȳk||2 ≤ ε

∀k ∈ {0, .., N}

(5.4)

In other words, the squared difference between new outputs (ŷk) and old ones (ȳk =

f(x̄k, uk; Θ̄)) must comply with the maximum difference of ε. This last value has been
empirically found with a trial and error approach: the maximum excursion yielding the
best prediction result turned out to be 0.8.

By repeating the optimization procedure, new output weights and biases are determined.
However, the validation phase suggests that the accuracy capabilities of the model ob-
tained through the "traditional" MHE and of the model obtained through the "updated"
MHE are almost overlapping (see Table 5.4). Conversely, the updated algorithm takes an
overall optimization time smaller by roughly 25% than the one required by the traditional
MHE procedure. In conclusion, the main reason why one may prefer the last proposed
algorithm to the standard MHE lies in a faster optimization process.

Model R2
min[%] R2

max[%] R2
avg[%] Optimization time

PB-GRU with traditional MHE 75.1967 99.4572 91.6002 1h32’

PB-GRU with updated MHE 77.0543 99.4177 91.9067 1h9’

Table 5.4: Comparison of the R2 values and computational times between the traditional
MHE problem and the updated one.

112 5| Lifelong Learning

5.3.3. Operating Conditions Change Scenario

This section aims at giving an overview on how to proceed in case of operating conditions
change. As anticipated, throughout the lifespan of a DHS it is most likely that the
working status of the system changes. In detail, for "operating conditions change" we
mean significant variations with respect to the usual possible range of power consumption.
In Chapter 2, it has been explained how each load profile could typically range from 30kW
to 420kW, because of the standard AROMA network functioning. Indeed, this range of
powers has also been selected to generate pseudorandom binary signals (PRBS) used
as training data so as to identify a system model. Therefore, we may call the power
consumptions belonging to that wide interval as "standard" operating conditions. By
contrast, even though the input training set includes a large variety of scenarios, it could
happen that, because of exogenous and unpredictable factors, the actual load profiles
exceed their ordinary range of power. For instance, if a winter were abnormally cold, the
power consumptions would be particularly high and out of the original working conditions
area.
Clearly, an alteration in the input values does not require an overall re-identification
procedure, since the original model is still able to predict the system dynamics in the
vast majority of the cases. Therefore, it is simply necessary to enlarge the initial neural
network model so that it is able to identify the plant behaviour even when the operating
conditions are unusual. Actually, the underlying issue consists in the lack of abnormal
power consumptions in the original training set. As a consequence, the "old" physics-
based gated recurrent unit network is unable to correctly simulate the system dynamics
only when anomalous disturbances occur.

Before discussing the resolution procedure of the just mentioned problem, it is useful to
introduce an example of unusual inputs for the AROMA network. A reasonable and ef-
fective change could be to triplicate or even quadruplicate the overall power consumption,
as shown in Figure 5.5. It goes without saying that, being the load profiles out of the
original training set, the old PB-GRU described in Chapter 3 fails to properly predict the
system dynamics, in particular in correspondence of power peaks (see Figure 5.8).

5| Lifelong Learning 113

4 8 12 16 20 24

0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.5: Comparison between a daily overall standard power consumption (blue) and
an abnormal one (red).

5.3.3.1. Model Uncertainty Identification

In order to tackle the problem of new operating conditions, we exploit a model uncertainty
identification strategy. An interesting insight on learning-based model predictive control
using different types of uncertainty is provided in [32].

The first thing to notice is that, in case of working status change, there is no need to
re-identify from scratch the system model. Indeed, we would like to preserve the existing
model since it is able to capture most working conditions. In addition, by maintaining
the original neural network equations it is possible to prevent catastrophic forgetting.
However, when the plant is fed with very unusual inputs, the old PB-GRU alone is not
enough. For this reason, we propose a simple yet efficient strategy to enlarge the original
system model. In particular, the goal is to estimate the model uncertainty caused by
new and unpredictable disturbances. To this end, after data collection, it is necessary to
identify offline a further network able to capture the model error dynamics. This novel
neural network is referred to as "additive", "incremental" or "∆RNN" (see Figure 5.6).

At this stage, a new training procedure can be run exploiting Python and the usual
library implemented in [8]. However, three main differences with respect to the procedure
analysed in the previous chapters can be pointed out.

First, in the model identification procedure carried out in Chapter 2 and 3, input data were
highly informative being made up of a large amount of pseudorandom binary sequences.
In this chapter however, since the exciting signals information is already embedded in
the original PB-GRU plus it is simply necessary to find out the error dynamics caused

114 5| Lifelong Learning

by abnormal power consumptions, we may exploit realistic data gathered during closed-
loop operations. In this way, the additive neural network would be fed with further
information, that is, actual measurements from the controlled plant, and it should be
able to refine the predictive capability of the existing PB-GRU. Furthermore, these data
must be collected after a certain period of time. Differently from the structural change
case (Section 5.3.2) where the plant could be modified overnight, an operating conditions
modification typically depends on the season of the year. For this reason, it makes little
sense to collect only a single-day data. Instead, it is far more reasonable to gather at
least a few days of plant operation measurements. This choice is likewise motivated by
the fact that the additive neural network must be trained from scratch and hence an
adequate amount of data is required. In addition, besides data collected during abnormal
operating conditions, it is intuitive to think that the additive neural network needs some
data gathered during ordinary operating conditions too, so that the new total PB-GRU
is able to predict both plant situations. In fact, if ∆PB-GRU is trained with working
conditions out of the standard power range only, when normal load profiles occur the
additive network negatively affects the prediction of the original PB-GRU, resulting in an
overall deteriorated performance. To sum up, it is essential to feed the additive neural
network with a decent amount of data, gathered both in normal and in abnormal operating
conditions.

Second, as far as the output data are concerned, it is necessary to collect at the end
of a certain period of time the difference between actual measured outputs y and the
corresponding values ŷ predicted by the original PB-GRU, i.e. ε = ∆ŷ = y − ŷ. In this
way, the additive neural network identifies the model uncertainty dynamics, namely the
prediction error made by the primary network.

Third, even though the physics-based structure of the incremental neural network is not
altered, a modification in the number of total states, and hence neurons, is required.
Indeed, adding a further neural network results in additional optimization variables (as
many as the states and outputs of the ∆RNN) in an MPC problem. For this reason,
we seek to keep the amount of additive states as low as possible. In addition, the error
dynamics that must be identified by the incremental PB-GRU is pretty limited and thus
a small number of neurons is entirely legitimate.

5| Lifelong Learning 115

u

Δŷ

+ ŷnew

y

ŷ

+

Plant

PB-GRU

ΔPB-GRU

Figure 5.6: Schematic representation of the additive network structure. The incremental
part is denoted by ∆PB-GRU and its objective is to identify the model-plant mismatch,
i.e. ∆ŷ. Altogether, this term is added to the original output estimation ŷ so as to find
the actual predicted output ŷnew.

5.3.3.2. Results

In this section some numerical results regarding the operating conditions change problem
are reported.
First, let us assume that after a broad period of the AROMA network functioning, we
collect data from the last week, where anomalous power consumptions have been fed to the
system. As usual, the first thing to do is to monitor the system status by computing the
RMSE. We find out that various errors overcome their corresponding thresholds, hence
the calculation of statistical distances is required. Since the Mahalanobis distances related
to input and output overcome their thresholds with, respectively, the values of 14.6838
and 62.3070, we may conclude that a change in the operating conditions occurred. At this
stage, a training procedure used to identify the model error dynamics is carried out. In
addition to the seven days where unusual working conditions have been detected, we insert
in the training set an equal number of realistic data collected during standard operating
conditions, so as to have a balance between them. After all, we can assume that, since
we spotted some data in anomalous conditions, the AROMA network must have been
operated in a much larger number of normal conditions, whose data are therefore at our
disposal.

116 5| Lifelong Learning

Second, having the plant-model mismatch a pretty limited dynamics, we can lower the
number of neurons used in the additive network with respect to the one employed for the
original PB-GRU. For instance, we could train an incremental neural network character-
ized by one third (18) of the original states (54). This modification is actually undertaken
for control purposes too. Indeed, the lower is the number of network neurons, the lighter
is the MPC computational burden. However, for the sake of completeness, we tested both
a ∆PB-GRU having, altogether, 54 states and one having 18 states ([2,2,2,3,4,5] neurons).
Clearly, the former showed a slightly higher accuracy than the latter, but the MPC algo-
rithm exploiting the 54-state incremental network was basically unmanageable, contrarily
to the 18-state one. In conclusion, an effective trade-off between model accuracy and
computational effort could be to use an incremental neural network with one third of the
original neurons.

Finally, it is convenient to visualize some identification results. Once the additive RNN
is trained, it is able to predict the error dynamics in many cases (see Figure 5.7).

50 100 150 200 250 300

-10

-8

-6

-4

-2

0

2

Figure 5.7: Additive network identification results. The error between the measured
supply temperature of the second user and the one predicted by the old PB-GRU (blue)
is compared to the error identified by the additive PB-GRU (red).

Even though the accuracy is not extremely high due to the presence of small oscillations
around 0◦C (FIT = 20.3%), the predictive capability of the overall new PB-GRU, i.e. the
summation of the old PB-GRU and the additive one, is impressive.
In fact, when the validation procedure is performed using novel inputs out of the standard
training range (the nominal overall power consumption is multiplied by a 3.7 coefficient),
the results are very satisfactory. As visible in Figure 5.8 and in Table 5.5, the total neural
network (original PB-GRU+∆PB-GRU) is perfectly able to capture the system dynamics
even in presence of abnormal power profiles.

5| Lifelong Learning 117

200 400 600 800 1000 1200 1400

65

70

75

80

85

90

(a) First user supply temperature

200 400 600 800 1000 1200 1400

64

66

68

70

72

74

76

78

80

82

84

(b) Fifth user supply temperature

200 400 600 800 1000 1200 1400

54

56

58

60

62

64

66

(c) First user return temperature

200 400 600 800 1000 1200 1400

54

56

58

60

62

64

66

(d) Fifth user return temperature

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(e) First user mass flow rate

200 400 600 800 1000 1200 1400

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

(f) Fifth user mass flow rate

200 400 600 800 1000 1200 1400

40

45

50

55

60

65

(g) Return temperature

200 400 600 800 1000 1200 1400

4

6

8

10

12

14

16

18

20

22

(h) Return mass flow rate

Figure 5.8: Comparison among the variables identified by the old PB-GRU (red), by the
new overall PB-GRU (yellow) and the measured ones (blue), in case of abnormal operating
conditions.

118 5| Lifelong Learning

Model R2
min[%] R2

max[%] R2
avg[%]

Original PB-GRU 20.8904 98.5662 78.2661

PB-GRU+∆PB-GRU 78.9819 99.0748 91.9028

Table 5.5: Comparison of the R2 values between the variables identified by the original
and by the new overall network, in case of abnormal operating conditions.

Moreover, the new total PB-GRU is also able to correctly capture the plant dynamics
when standard operating conditions are restored. This means that the additive neural
network does not deteriorate the original PB-GRU performance, but rather the latter is
slightly improved thanks to the incremental training data collected during closed-loop
operations (see Figure 5.9 and Table 5.6).

200 400 600 800 1000 1200 1400

65

70

75

80

85

(a) First user supply temperature

200 400 600 800 1000 1200 1400

64

66

68

70

72

74

76

78

80

82

84

(b) Fifth user supply temperature

200 400 600 800 1000 1200 1400

58

59

60

61

62

63

64

65

(c) First user return temperature

200 400 600 800 1000 1200 1400

58

59

60

61

62

63

64

65

(d) Fifth user return temperature

5| Lifelong Learning 119

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(e) First user mass flow rate

200 400 600 800 1000 1200 1400

0.5

1

1.5

2

2.5

3

3.5

(f) Fifth user mass flow rate

200 400 600 800 1000 1200 1400

56

57

58

59

60

61

62

63

64

(g) Return temperature

200 400 600 800 1000 1200 1400

4

6

8

10

12

14

16

18

(h) Return mass flow rate

Figure 5.9: Comparison among the variables identified by the old PB-GRU (red), by the
new overall PB-GRU (yellow) and the measured ones (blue), in case of normal operating
conditions.

Model R2
min[%] R2

max[%] R2
avg[%]

Original PB-GRU 64.2446 99.0405 92.8900

PB-GRU+∆PB-GRU 87.9900 99.4243 95.1885

Table 5.6: Comparison of the R2 values between the variables identified by the original
and by the new overall network, in case of normal operating conditions.

Finally, it is convenient to test this new total model in closed-loop. The results are
indeed pretty regular, i.e. no constraints violation occurs and the control variable varies
according to the principles explained in Chapter 4. However, the overall simulation time
is definitely greater than the usual one, but this does not surprise. As anticipated, adding
a further neural network to the MPC scheme has the effect of increasing the number of
optimization variables. Thereby, the so-updated MPC regulator requires almost three
hours to complete the optimization procedure over a daily operating simulation.

To sum up, the lifelong learning solution proposed in this section is perfectly suitable in
the case of a working conditions change: the algorithm is actually able to improve the

120 5| Lifelong Learning

identification performance of the original model alone.

However, one might wonder why, since a further training procedure is performed, it is
not carried out a re-training of the original neural network with additive input data.
For sure, this is a plausible alternative. In fact, the original PB-GRU could be trained
from scratch appending to the initial PRBS input signals some data collected during
anomalous operating conditions. If we compare the validation results of the overall PB-
GRU (obtained by summing up the standard GRU and the additive one) and of the
PB-GRU which has been re-trained with further information, we can notice that the
performances are pretty similar. In fact, they have an average R2 value of 91.9028 and
91.9536, respectively. This should come at no surprise since the additional data appended
to the original ones to re-train the primary PB-GRU are exactly the same data through
which the incremental network has been trained.
However, the re-training procedure of the original PB-GRU with further data took almost
five hours and half (1500 epochs). By contrast, the additive network training lasted around
three hours, for the same amount of epochs. In conclusion, we may say that re-training
the original PB-GRU is not so efficient in terms of computational time, also because
several hours were originally spent to perform the initial training where most of the new
dataset was already included. In fact, the amount of data collected in anomalous operating
conditions is undoubtedly lower than the original PRBS length. For this reason, we may
conclude that it is more efficient to train a smaller additive PB-GRU with a restricted
dataset made of only normal or abnormal realistic operating conditions that were not
included in the original training set.

5.4. Long-term Monitoring

In this section some final remarks are highlighted. Indeed, lifelong learning is still an
open issue under several aspects and, in particular, this chapter treatment leaves some
questions unanswered.

First, one might wonder what happens when multiple changes of plant occur over the
years. The method proposed in this thesis, namely the MHE technique, requires a new
optimization procedure each time a structural change is detected (through RMSE and
T 2). Hence, we could conclude that, since a structural modification in the plant is inde-
pendent from others, one has to re-optimize the network output weights and biases every
time new data are available.

Second, a similar rationale can be applied to the operating conditions change scenario.
In fact, when a new working status is detected, the additive RNN must be re-trained

5| Lifelong Learning 121

by appending to existing unusual data the new ones. By doing so, we end up having
a single incremental RNN which is re-trained with an updated training set containing
the standard working status, "old" abnormal conditions and "new" ones. However, this
circumstance would not happen really often, being the original training set very wide and
the anomalous cases not so frequent, by definition. An alternative could be to train a novel
RNN each time new conditions are sensed. In this way, in the global MPC scheme we
would have the summation of a certain number of additive networks. Unfortunately, this
second option could bring to an intractability of the control problem. Actually, if several
incremental networks were added, the finite horizon control optimization problem would
have a very large number of optimization variables and, eventually, it would become
unmanageable. In conclusion, when anomalous conditions are detected, we propose to
simply re-train the already existing additive RNN with larger and larger datasets. Clearly,
once the incremental network is trained and tested, the benchmark training set with
respect to which the Mahalanobis distance is computed must be enlarged including the
new anomalous operating conditions that, by this time, are no longer anomalous.

Finally, the two proposed algorithms for the lifelong learning and monitoring of a dis-
trict heating system can be applied one right after the other, offline, when simultaneous
modifications occur in the plant.

5.5. Conclusions

In this chapter the challenge of long-term monitoring of the AROMA network has been
tackled. In detail, a methodological algorithm to manage different kinds of scenario
has been proposed. Our lifelong learning strategy mainly focused on anomaly detection
through the simple but rather effective computation of the statistical distance. More-
over, for each detected scenario, a different resolution algorithm has been provided. In
particular, in case of plant change, a simplification of the standard moving horizon es-
timation problem has been adopted so as to significantly lower the computational time.
Furthermore, in case of operating conditions change, a model uncertainty identification,
once again performed through an incremental physics-based neural network, has been pre-
sented. In conclusion, we managed to cope with the lifelong learning and control problem
via multiple techniques fine-tuned according to the type of change detected.

123

Conclusions and Future
Developments

In the Introduction, a general overview on the thesis challenges and objectives has been
presented. In this final chapter, it is therefore useful to summarize the main achievements
and possible developments of the work.

The first outcome consists in the modelling of a district heating network through data-
driven methods, and in particular via recurrent neural networks. Even though this tech-
nique turns out to have greater identification performance than classical models such as
state-space and polynomials, a further improvement can be made. In fact, the crucial
contribution of the thesis consists in the development of a physics-based machine learning
method. Thanks to a structure of the neural network that resembles the physical system
topology and interactions, many enhancements with respect to standard RNNs are ob-
tained: higher predictive accuracy, faster training procedure, greater interpretability and
easier problem detection.

A further achievement of the work is related to the non-linear model predictive control
strategy applied to district heating systems. In particular, an MPC scheme has been
implemented by making use of the physics-based gated recurrent unit equations both
in the finite horizon control optimization problem formulation and in the state observer
design.

The last contribution regards the lifelong learning issue. Since, in the long run, the district
heating system under analysis must be continually monitored and supervised, we proposed
a novel algorithm to tackle the problem of model changes over time. In particular, an
effective solution depending on the category of scenario detected was presented.

Finally, although the results achieved in thesis are rewarding, the work is nonetheless a
starting point for many possible reflections and developments.

Above all, given that the physics-based neural network developed in Chapter 3 has been
only tested on the AROMA network case study, it would be desirable to try out the

124 | Conclusions and Future Developments

aforementioned machine learning method on other and different types of complex systems,
such as industrial and chemical plants, but also energy and biological systems. In fact,
since such systems are often interconnected through physical networks characterized by
a well-defined modular and sequential topology, it would reasonable to identify their
model through the physics-informed machine learning approach. In the end, a formal
and methodological generalization of the just mentioned technique could be eventually
synthesized so that various applications could benefit from it.
In addition, as anticipated in Chapter 3, for plants that present unclear interactions among
their nodes (meshed networks), the PB-RNN implementation is not trivial and requires
further in-depth studies.

Another challenge left open in Chapter 4 regards the implementation of a closed-loop
state observer by means of physics-based neural network equations. Actually, for the sake
of simplicity, we implemented a plain open-loop observer. Indeed, the latter makes use
of the PB-GRU model, but, from the control point of view, it would be more effective
implementing an observer which exploits a feedback innovation term too. Additionally,
for an even more efficient predictive control strategy, it would be necessary to develop a
powerful disturbance forecasting algorithm, which was not provided in this thesis because
out of its scope.

Lastly, the lifelong learning topic, being an outstanding issue by itself, left some questions
unanswered. Indeed, the challenge with task-incremental learning is mainly to optimize
the trade-off between performance and computational complexity and to use information
learned in one task to improve performance on other tasks [85].
In this thesis case, for instance, the adopted moving horizon estimation algorithm still
lacks of scalability [12]. In other words, when a huge number of optimization variables is
inserted in the problem, the computational time grows exponentially. It would be there-
fore advisable to modify the MHE algorithm in order to get rid of the intractability issue
caused by the high dimensionality of the optimization problem.
Finally, the identification procedure of the incremental neural network proposed in Chap-
ter 5 could be definitely deepened and enhanced. In fact, the method is run offline and
the additive PB-RNN results in a more complex control problem. However, the various
approaches suggesting to estimate model uncertainty online [32, 90, 94] yield poor predic-
tive accuracy because of the data scarcity. In the end, further investigation regarding the
trade-off between online and offline plant-model mismatch estimation is surely advisable.

125

Bibliography

[1] MATLAB, “System Identification Toolbox”, Mathworks. [ONLINE].

[2] A. Alanqar, H. Durand, and P. D. Christofides. Error-triggered on-line model iden-
tification for model-based feedback control. AIChE Journal, 63(3):949–966, 2017.

[3] B. Anderson, T. S. Hy, and R. Kondor. Cormorant: Covariant molecular neural
networks. Advances in neural information processing systems, 32, 2019.

[4] E. M. Azoff. Neural network time series forecasting of financial markets. John Wiley
& Sons, Inc., 1994.

[5] A. Bemporad. Recurrent neural network training with convex loss and regularization
functions by extended kalman filtering. IEEE Transactions on Automatic Control,
2022.

[6] F. Bianchi, A. Castellini, P. Tarocco, and A. Farinelli. Load forecasting in district
heating networks: Model comparison on a real-world case study. In International
Conference on Machine Learning, Optimization, and Data Science, pages 553–565.
Springer, 2019.

[7] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen. Recur-
rent neural networks for short-term load forecasting: an overview and comparative
analysis. Springer. 2017.

[8] F. Bonassi. ssnet: a Python module for training State Space neural NETworks,
Available: https: // github. com/ bonassifabio/ ssnet .

[9] F. Bonassi, E. Terzi, M. Farina, and R. Scattolini. Lstm neural networks: Input to
state stability and probabilistic safety verification. In Learning for Dynamics and
Control, pages 85–94. PMLR, 2020.

[10] F. Bonassi, O. da Silva, and R. Scattolini. Nonlinear mpc for offset-free tracking of
systems learned by gru neural networks. IFAC-PapersOnLine, 54(14):54–59, 2021.

[11] F. Bonassi, M. Farina, J. Xie, and R. Scattolini. On recurrent neural networks for
learning-based control: recent results and ideas for future developments. Journal of
Process Control, 114:92–104, 2022.

[12] F. Bonassi, J. Xie, M. Farina, and R. Scattolini. Towards lifelong learning of recurrent

126 | Bibliography

neural networks for control design. In 2022 European Control Conference (ECC),
pages 2018–2023. IEEE, 2022.

[13] J. A. Bullinaria. Recurrent neural networks. Neural Computation: Lecture, 12, 2013.

[14] Z. Chang, Y. Zhang, and W. Chen. Electricity price prediction based on hybrid
model of adam optimized lstm neural network and wavelet transform. Energy, 187:
115804, 2019.

[15] B. Chen, C. Shen, D. Wang, L. Kong, L. Chen, and Z. Zhu. A lifelong learning
method for gearbox diagnosis with incremental fault types. IEEE Transactions on
Instrumentation and Measurement, 71:1–10, 2022.

[16] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[17] A. Daw, A. Karpatne, W. Watkins, J. Read, and V. Kumar. Physics-guided neu-
ral networks (pgnn): An application in lake temperature modeling. arXiv preprint
arXiv:1710.11431, 2017.

[18] A. Daw, R. Q. Thomas, C. C. Carey, J. S. Read, A. P. Appling, and A. Karpatne.
Physics-guided architecture (pga) of neural networks for quantifying uncertainty in
lake temperature modeling. In Proceedings of the 2020 siam international conference
on data mining, pages 532–540. SIAM, 2020.

[19] G. De Nicolao and R. Scattolini. Identificazione parametrica. CUSL ed, 1997.

[20] F. Dörfler, J. W. Simpson-Porco, and F. Bullo. Electrical networks and algebraic
graph theory: Models, properties, and applications. Proceedings of the IEEE, 106
(5):977–1005, 2018.

[21] J. Drgoňa, A. R. Tuor, V. Chandan, and D. L. Vrabie. Physics-constrained deep
learning of multi-zone building thermal dynamics. Energy and Buildings, 243:110992,
2021.

[22] S. G. Dukelow. The control of boilers. Instrument Society of America, Research
Triangle Park, NC. 1986.

[23] H. Fang, J. Xia, K. Zhu, Y. Su, and Y. Jiang. Industrial waste heat utilization for
low temperature district heating. Energy policy, 62:236–246, 2013.

[24] S. S. Farahani, Z. Lukszo, T. Keviczky, B. De Schutter, and R. M. Murray. Robust
model predictive control for an uncertain smart thermal grid. In 2016 European
Control Conference (ECC), pages 1195–1200. IEEE, 2016.

| Bibliography 127

[25] F. Filippetti, G. Franceschini, and C. Tassoni. Neural networks aided on-line diagnos-
tics of induction motor rotor faults. In Conference Record of the 1993 IEEE Industry
Applications Conference Twenty-Eighth IAS Annual Meeting, pages 316–323. IEEE,
1993.

[26] B. Foss and T. A. N. Heirung. Merging optimization and control. Lecture Notes,
2013.

[27] N. Fumo. A review on the basics of building energy estimation. Renewable and
sustainable energy reviews, 31:53–60, 2014.

[28] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems,
28(10):2222–2232, 2016.

[29] E. Guelpa, G. Mutani, V. Todeschi, and V. Verda. Reduction of co2 emissions in
urban areas through optimal expansion of existing district heating networks. Journal
of Cleaner Production, 204:117–129, 2018.

[30] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[31] R. Hedjar. Adaptive neural network model predictive control. International Journal
of Innovative Computing, Information and Control, 9(3):1245–1257, 2013.

[32] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based
model predictive control: Toward safe learning in control. Annual Review of Control,
Robotics, and Autonomous Systems, 3:269–296, 2020.

[33] J. Hinrichs, D. Felsmann, S. Schweitzer-De Bortoli, H.-J. Tomczak, and H. Pitsch.
Numerical and experimental investigation of pollutant formation and emissions in a
full-scale cylindrical heating unit of a condensing gas boiler. Applied Energy, 229:
977–989, 2018.

[34] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[35] S. Idowu, S. Saguna, C. Åhlund, and O. Schelén. Applied machine learning: Fore-
casting heat load in district heating system. Energy and Buildings, 133:478–488,
2016.

[36] H. Jabbar and R. Z. Khan. Methods to avoid over-fitting and under-fitting in su-

128 | Bibliography

pervised machine learning (comparative study). Computer Science, Communication
and Instrumentation Devices, 70, 2015.

[37] X. Jia, A. Karpatne, J. Willard, M. Steinbach, J. Read, P. C. Hanson, H. A. Dugan,
and V. Kumar. Physics guided recurrent neural networks for modeling dynamical
systems: Application to monitoring water temperature and quality in lakes. arXiv
preprint arXiv:1810.02880, 2018.

[38] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and V. Kumar.
Physics guided rnns for modeling dynamical systems: A case study in simulating lake
temperature profiles. In Proceedings of the 2019 SIAM International Conference on
Data Mining, pages 558–566. SIAM, 2019.

[39] A. Karpatne, R. Kannan, and V. Kumar. Knowledge Guided Machine Learning:
Accelerating Discovery using Scientific Knowledge and Data. CRC Press, 2022.

[40] S. Karsoliya. Approximating number of hidden layer neurons in multiple hidden layer
bpnn architecture. International Journal of Engineering Trends and Technology, 3
(6):714–717, 2012.

[41] A. Khandelwal, S. Xu, X. Li, X. Jia, M. Stienbach, C. Duffy, J. Nieber, and
V. Kumar. Physics guided machine learning methods for hydrology. arXiv preprint
arXiv:2012.02854, 2020.

[42] K. Kontu, S. Rinne, and S. Junnila. Introducing modern heat pumps to existing
district heating systems–global lessons from viable decarbonizing of district heating
in finland. Energy, 166:862–870, 2019.

[43] R. Krug, V. Mehrmann, and M. Schmidt. Nonlinear optimization of district heating
networks. Optimization and Engineering, 22(2):783–819, 2021.

[44] A. La Bella and A. Del Corno. Optimal management and data-based predictive
control of district heating systems: The Novate Milanese experimental case-study.
Control Engineering Practice, 132:105429, 2023.

[45] A. La Bella, A. Del Corno, and A. Scaburri. Data-driven modelling and optimal man-
agement of district heating networks. In 2021 AEIT International Annual Conference
(AEIT), pages 1–6. IEEE, 2021.

[46] M. Lalo and R. Scattolini. Advanced and multivariable control. Pitagora editrice
Bologna, 2014.

| Bibliography 129

[47] R. Lippmann. Book review:" neural networks, a comprehensive foundation", by
simon haykin. International Journal of Neural Systems, 5(04):363–364, 1994.

[48] F. Liu, L. Zheng, and R. Zhang. Emissions and thermal efficiency for premixed
burners in a condensing gas boiler. Energy, 202:117449, 2020.

[49] L. Ljung. System identification. In Signal analysis and prediction, pages 163–173.
Springer, 1998.

[50] L. Ljung. Black-box models from input-output measurements. In IMTC 2001. Pro-
ceedings of the 18th IEEE instrumentation and measurement technology conference.
Rediscovering measurement in the age of informatics (Cat. No. 01CH 37188), vol-
ume 1, pages 138–146. IEEE, 2001.

[51] P. D. Lund, J. Mikkola, and J. Ypyä. Smart energy system design for large clean
power schemes in urban areas. Journal of Cleaner Production, 103:437–445, 2015.

[52] L. Lyu, Z. Chen, and B. Yao. Development of pump and valves combined hydraulic
system for both high tracking precision and high energy efficiency. IEEE Transactions
on Industrial Electronics, 66(9):7189–7198, 2018.

[53] D. Machalek, J. Tuttle, K. Andersson, and K. M. Powell. Dynamic energy system
modeling using hybrid physics-based and machine learning encoder-decoder models.
Energy and AI, page 100172, 2022.

[54] E. Mäki, L. Kannari, I. Hannula, and J. Shemeikka. Decarbonization of a district
heating system with a combination of solar heat and bioenergy: A techno-economic
case study in the northern european context. Renewable Energy, 175:1174–1199,
2021.

[55] D. Mandic and J. Chambers. Recurrent neural networks for prediction: learning
algorithms, architectures and stability. Wiley, 2001.

[56] B. C. Mateus, M. Mendes, J. T. Farinha, R. Assis, and A. M. Cardoso. Comparing
lstm and gru models to predict the condition of a pulp paper press. Energies, 14(21):
6958, 2021.

[57] T. Miconi, K. Stanley, and J. Clune. Differentiable plasticity: training plastic neural
networks with backpropagation. In International Conference on Machine Learning,
pages 3559–3568. PMLR, 2018.

[58] D. C. Montgomery. Introduction to statistical quality control. John Wiley & Sons,
2020.

130 | Bibliography

[59] K. R. Muske and T. A. Badgwell. Disturbance modeling for offset-free linear model
predictive control. Journal of Process Control, 12(5):617–632, 2002.

[60] S. A. Niaki, E. Haghighat, T. Campbell, A. Poursartip, and R. Vaziri. Physics-
informed neural network for modelling the thermochemical curing process of
composite-tool systems during manufacture. Computer Methods in Applied Mechan-
ics and Engineering, 384:113959, 2021.

[61] L. Nigro. Hierarchical predictive control of networked multi-energy systems. M.sc.
thesis. 2022.

[62] E. O’Riordan. Distance measures and whitening procedures for high dimensional data.
PhD thesis, Cardiff University, 2023.

[63] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54–71, 2019.

[64] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318. PMLR,
2013.

[65] Y. Putter. Distributed control design of district heating networks. M.sc. thesis. 2018.

[66] M. Qu, O. Abdelaziz, and H. Yin. New configurations of a heat recovery absorption
heat pump integrated with a natural gas boiler for boiler efficiency improvement.
Energy Conversion and Management, 87:175–184, 2014.

[67] D. Quaggiotto, J. Vivian, and A. Zarrella. Management of a district heating network
using model predictive control with and without thermal storage. Optimization and
Engineering, 22(3):1897–1919, 2021.

[68] S. Rasp, M. S. Pritchard, and P. Gentine. Deep learning to represent subgrid pro-
cesses in climate models. Proceedings of the National Academy of Sciences, 115(39):
9684–9689, 2018.

[69] B. Rezaie and M. A. Rosen. District heating and cooling: Review of technology and
potential enhancements. Applied energy, 93:2–10, 2012.

[70] G. Sandou, S. Font, S. Tebbani, A. Hiret, C. Mondon, S. Tebbani, A. Hiret, and
C. Mondon. Predictive control of a complex district heating network. In IEEE
conference on decision and control, volume 44, page 7372. Citeseer, 2005.

[71] A. S. Santra and J.-L. Lin. Integrating long short-term memory and genetic algorithm
for short-term load forecasting. Energies, 12(11):2040, 2019.

| Bibliography 131

[72] S. Schmidgall and J. Hays. Stable lifelong learning: Spiking neurons as a solution
to instability in plastic neural networks. In Neuro-Inspired Computational Elements
Conference, pages 1–7, 2022.

[73] O. Schön, R.-S. Götte, and J. Timmermann. Multi-objective physics-guided recurrent
neural networks for identifying non-autonomous dynamical systems. arXiv preprint
arXiv:2204.12972, 2022.

[74] J. Schoukens and L. Ljung. Nonlinear system identification: A user-oriented road
map. IEEE Control Systems Magazine, 39(6):28–99, 2019.

[75] N. Shi and D. Li. Rmsprop converges with proper hyperparameter. In international
conference on learning representation, 2021.

[76] A. Soltoggio, K. O. Stanley, and S. Risi. Born to learn: the inspiration, progress,
and future of evolved plastic artificial neural networks. Neural Networks, 108:48–67,
2018.

[77] T. Sommer, S. Mennel, and M. Sulzer. Lowering the pressure in district heating and
cooling networks by alternating the connection of the expansion vessel. Energy, 172:
991–996, 2019.

[78] S. Spinelli. Optimization and control of smart thermal-energy grids. PhD thesis.
2021.

[79] D. Srivastava, Y. Singh, and A. Sahoo. Auto tuning of rnn hyper-parameters using
cuckoo search algorithm. In 2019 Twelfth International Conference on Contemporary
Computing (IC3), pages 1–5. IEEE, 2019.

[80] F. Sun, L. Fu, S. Zhang, and J. Sun. New waste heat district heating system with
combined heat and power based on absorption heat exchange cycle in china. Applied
Thermal Engineering, 37:136–144, 2012.

[81] B. Talebi, P. A. Mirzaei, A. Bastani, and F. Haghighat. A review of district heating
systems: modeling and optimization. Frontiers in Built Environment, 2:22, 2016.

[82] E. Terzi, F. Bonassi, M. Farina, and R. Scattolini. Learning model predictive con-
trol with long short-term memory networks. International Journal of Robust and
Nonlinear Control, 31(18):8877–8896, 2021.

[83] V. Thangarasa, T. Miconi, and G. W. Taylor. Differentiable hebbian plasticity for
continual learning. In International conference on machine learning (ICML) adaptive
and multitask learning: Algorithms & Systems (AMTL) workshop, page 2019, 2019.

132 | Bibliography

[84] M. Uzair and N. Jamil. Effects of hidden layers on the efficiency of neural networks.
In 2020 IEEE 23rd international multitopic conference (INMIC), pages 1–6. IEEE,
2020.

[85] G. M. van de Ven, T. Tuytelaars, and A. S. Tolias. Three types of incremental
learning. Nature Machine Intelligence, pages 1–13, 2022.

[86] F. Verrilli, S. Srinivasan, G. Gambino, M. Canelli, M. Himanka, C. Del Vecchio,
M. Sasso, and L. Glielmo. Model predictive control-based optimal operations of
district heating system with thermal energy storage and flexible loads. IEEE Trans-
actions on Automation Science and Engineering, 14(2):547–557, 2016.

[87] A. Wachter. An interior point algorithm for large-scale nonlinear optimization with
applications in process engineering. PhD thesis, Carnegie Mellon University, 2002.

[88] M. Wirtz, L. Neumaier, P. Remmen, and D. Müller. Temperature control in 5th gen-
eration district heating and cooling networks: An milp-based operation optimization.
Applied Energy, 288:116608, 2021.

[89] W. C. Wong, E. Chee, J. Li, and X. Wang. Recurrent neural network-based model
predictive control for continuous pharmaceutical manufacturing. Mathematics, 6(11):
242, 2018.

[90] Z. Wu, D. Rincon, and P. D. Christofides. Real-time adaptive machine-learning-
based predictive control of nonlinear processes. Industrial & Engineering Chemistry
Research, 59(6):2275–2290, 2019.

[91] Z. Wu, D. Rincon, and P. D. Christofides. Process structure-based recurrent neural
network modeling for model predictive control of nonlinear processes. Journal of
Process Control, 89:74–84, 2020.

[92] Y. Xu and R. Goodacre. On splitting training and validation set: A comparative
study of cross-validation, bootstrap and systematic sampling for estimating the gen-
eralization performance of supervised learning. Journal of analysis and testing, 2(3):
249–262, 2018.

[93] B. Zhang, X. Sun, S. Liu, and X. Deng. Recurrent neural network-based model
predictive control for multiple unmanned quadrotor formation flight. International
journal of aerospace engineering, 2019:1–18, 2019.

[94] Y. Zheng and Z. Wu. Physics-informed online machine learning and predictive con-
trol of nonlinear processes with parameter uncertainty. Industrial & Engineering
Chemistry Research, 2023.

| Conclusions and Future Developments 133

[95] Z. Zheng, P. Luo, Y. Li, S. Luo, J. Jian, and Z. Huang. Towards lifelong thermal
comfort prediction with kubeedge-sedna: online multi-task learning with metaknowl-
edge base. In Proceedings of the Thirteenth ACM International Conference on Future
Energy Systems, pages 263–276, 2022.

135

List of Figures

1 CO2 emissions by region. 1
2 A schematic example of a district heating system [44]. 3
3 A schematic description of physics-informed machine learning use of scien-

tific knowledge and data with respect to standard methods [39]. 5

1.1 The gas boiler representation in the DHN4Control Modelica library. 10
1.2 The differential pressure pump in the DHN4Control Modelica library. . . . 12
1.3 The expansion vessel in the DHN4Control Modelica library. 13
1.4 Finite volume method: discretisation of a pipe with n sections. 13
1.5 A generic pipe in the DHN4Control Modelica library. 14
1.6 A generic consumer in the DHN4Control Modelica library. 14
1.7 Valve proportional controller implemented in Modelica. 15
1.8 AROMA network schematic representation: forward-flow arcs are plotted

in solid red, backward-flow arcs in dashed blue, users in green and the
heating station in dotted yellow. Nodes in the forward part are referred to
as Fi, in the return part as Ri. 16

1.9 The complete AROMA network implemented in Modelica. 17
1.10 Daily simulation inputs. 19
1.11 Main AROMA network outputs in a daily simulation: in blue the first

user’s variables, in purple the second’s, in red the third’s, in green the
fourth’s, in yellow the fifth’s and in light-blue the return variables. 20

2.1 Example of noisy inputs. 25
2.2 Input and output variables of a 10-day simulation, used for training : in

blue the first user’s variables, in purple the second’s, in red the third’s, in
green the fourth’s, in yellow the fifth’s and in light-blue the return variables. 26

2.3 Input and output variables of a daily simulation, used for testing : in blue
the first user’s variables, in purple the second’s, in red the third’s, in green
the fourth’s, in yellow the fifth’s and in light-blue the return variables. . . . 27

2.4 Polynomial models best identification results: in black the ground truth,
in green the ARX model’s result, in blue the SS’ and in red the OE’s. . . . 32

2.5 A schematic representation of an illustrative RNN. The input layer (6 in-
puts) is depicted in light-blue, the two hidden layers (7 neurons each) are
displayed in green and the output layer (5 outputs) is depicted in orange. . 36

136 | List of Figures

2.6 Variables identified by the best GRU (red) compared to the real ones (blue). 40
2.7 ARX and GRU results comparison. 42
2.8 Daily simulation: variables identified by a GRU (red) compared to the real

ones (blue). 43

3.1 A schematic representation of the GRU implemented both with the tradi-
tional loss function and with the constrained one. Inputs are highlighted
in light-blue, outputs in orange. 50

3.2 An intuitive representation of how the ith load and variables of the physical
system are turned into a GRU model. Its inputs are depicted in light-blue,
the outputs in orange. The user is represented in green, the forward pipe
in red and the return line in blue. 51

3.3 AROMA network scheme representing the forward-flow part: arcs are plot-
ted in red, users in green and nodes are referred to as Fi. 52

3.4 Scheme representing the impact of each load on the others in the AROMA
network, in terms of supply temperature. Users (GRUs) are depicted in
green, supply in red. Each GRU connection has a different line style to
better visualize the dependence. 53

3.5 Schematic physics-based RNN having as input, besides the supply temper-
ature, the single Pi. Inputs are depicted in light-blue, outputs in orange.
Being T s

i an output for the ith load and an input for the subsequent one,
it is represented both in light-blue and in orange. 54

3.6 Schematic physics-based RNN having as input Pi and the summation of
the other load profiles. Inputs are depicted in light-blue, outputs in orange.
Being T s

i an output for the ith load and an input for the subsequent one,
it is represented both in light-blue and in orange. 55

3.7 Schematic physics-based GRU used to hard-code the whole return network.
Inputs are depicted in light-blue, outputs in orange. The index j stands as
usual for j = {1, ..., nloads}. 56

3.8 Scheme of the implemented physics-based RNN, highlighting the six GRUs
and their input and output variables. Inputs are depicted in light-blue,
outputs in orange. Being T s

i an output for the ith load and an input for
the subsequent one, it is represented both in light-blue and in orange. . . . 57

3.9 Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based RNN (yellow). The target FIT is represented in
blue. 63

3.10 Variables identified by a PB-GRU (red) compared to the real ones (blue). . 65

| List of Figures 137

3.11 Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based one (yellow), both having 54 states. The target
FIT is represented in blue. The model samples are collected every minute. 68

3.12 Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a physics-based one (yellow), both having 54 states. The target
FIT is represented in blue. The model samples are collected every five
minutes. 70

3.13 Comparison among the FIT trend of a traditional RNN trained with 15200
samples (red), of a PB-RNN trained with 15200 samples (yellow), of a
traditional RNN trained with 3040 samples (blue) and of a PB-RNN trained
with 3040 samples (purple). The model samples are collected every five
minutes. 71

3.14 Comparison between the FIT trend of a traditional RNN (red) and the FIT
trend of a PB-RNN (yellow), both trained with 3040 samples. The model
samples are collected every five minutes. The training was stopped after
600 epochs because over-fitting occurred. 72

4.1 Scheme of the control algorithm, including the optimization part (MPC),
the observer and the plant. 76

4.2 Comparison between the daily disturbance forecast (red) and the actual
power demand (blue). 79

4.3 Daily electrical cost. Data extracted from an Italian average of January
2023. 83

4.4 Schematic representation of the blocking strategy. N is the prediction
horizon, Nb is the number of steps in which the control variable u(k) is
blocked. 87

4.5 PI-GRU-based MPC optimization results. When more variables are plotted
in the same graph, the first user’s variables are represented in blue, in purple
the second’s, in red the third’s, in green the fourth’s, in yellow the fifth’s
and in light-blue the overall return temperature (d). The constraints are
depicted in black. The large boundaries of the boiler power (b) are not
displayed to have a better close-up. 89

4.6 Standard GRU-based MPC optimization results. When more variables are
plotted in the same graph, the first user’s variables are represented in blue,
in purple the second’s, in red the third’s, in green the fourth’s, in yellow the
fifth’s and in light-blue the overall return temperature (d). The constraints
are depicted in black. 91

138 | List of Figures

5.1 Example of the normal distribution of a system variable error: T s
5 plant-

model mismatch. The number of observations is 2000, i.e. around seven
days sampled every five minutes. 98

5.2 Schematic representation of the ellipsoidal confidence region of T 2 in case
of two variables. 99

5.3 Comparison between some AROMA network variables in the case of old
plant (blue) and new plant (red). 105

5.4 Comparison among the variables identified by the old PB-GRU (red), by
the new PB-GRU (yellow) and the measured ones (blue), in case of a novel
plant. 109

5.5 Comparison between a daily overall standard power consumption (blue)
and an abnormal one (red). 113

5.6 Schematic representation of the additive network structure. The incre-
mental part is denoted by ∆PB-GRU and its objective is to identify the
model-plant mismatch, i.e. ∆ŷ. Altogether, this term is added to the
original output estimation ŷ so as to find the actual predicted output ŷnew. 115

5.7 Additive network identification results. The error between the measured
supply temperature of the second user and the one predicted by the old PB-
GRU (blue) is compared to the error identified by the additive PB-GRU
(red). 116

5.8 Comparison among the variables identified by the old PB-GRU (red), by
the new overall PB-GRU (yellow) and the measured ones (blue), in case of
abnormal operating conditions. 117

5.9 Comparison among the variables identified by the old PB-GRU (red), by
the new overall PB-GRU (yellow) and the measured ones (blue), in case of
normal operating conditions. 119

139

List of Tables

1.1 Weights of the AROMA network describing how the overall power request
is partitioned among the five consumers. 18

2.1 Polynomial models FIT comparison. 33
2.2 Performance comparison among different models of RNN. 39
2.3 ARX and GRU FIT comparison. 41

3.1 Performance of a GRU with constrained loss function compared to a tra-
ditional one. 50

3.2 Comparison between the two physics-based approaches having different
inputs. 55

3.3 Comparison of the AROMA network identified with standard RNN and
PB-RNN. 63

3.4 Comparison of the AROMA network identified with standard RNN and PB-
RNN, using a restricted amount of neurons per layer. The model samples
are collected every minute. 68

3.5 Comparison of the AROMA network identified with standard RNN and PB-
RNN, using a restricted amount of neurons per layer and 15200 samples.
The model samples are collected every five minutes. 70

3.6 Comparison of the AROMA network identified with standard RNN and
PB-RNN, using a smaller amount of data (3040 samples). The model
samples are collected every five minutes. 71

3.7 Comparison of the AROMA network identified with standard RNN (best
configuration) and PB-RNN, using a smaller amount of data. The model
samples are collected every five minutes. 73

4.1 Main optimization variables. 78
4.2 Main optimization parameters. 86
4.3 Comparison between the performance of PI-RNN-based MPC and standard

RNN-based MPC. The electrical cost, the average and maximum resolution
time per iteration, together with the total resolution time, are reported for
the two models. 90

140 | List of Tables

5.1 Comparison of RMSE in three different cases for each output variable.
The thresholds are highlighted in light-blue, whereas the values exceeding
the corresponding thresholds are highlighted in red. 102

5.2 Comparison of Mahalanobis distances in three different cases. The thresh-
olds are highlighted in light-blue, whereas the values exceeding the corre-
sponding thresholds are highlighted in red. 102

5.3 Comparison of the R2 values between the variables identified by the original
and by the new model. 110

5.4 Comparison of the R2 values and computational times between the tradi-
tional MHE problem and the updated one. 111

5.5 Comparison of the R2 values between the variables identified by the original
and by the new overall network, in case of abnormal operating conditions. . 118

5.6 Comparison of the R2 values between the variables identified by the original
and by the new overall network, in case of normal operating conditions. . . 119

5.7 List of parameters used in the thesis . 142
5.8 List of variables used in the thesis . 143

141

List of Parameters

Symbol Description Value SI unit
cp Water specific heat 4186 [J/kg K]

dins Pipe insulation thickness 0.2 [m]

dwall Pipe metal wall thickness 0.003 [m]

Dpipe
j Pipe internal diameter * [m]

kPID Boiler PID gain 5 · 104 -

kP Load proportional gain 0.05 -

Kv Flow factor 36 m3/h

f Fanning friction coefficient 0.004 -

λs Steel thermal conductivity 45 [W/m K]

Lpipe
j Pipe length * [m]

Mw Mass of water inside the mixing volume 160 [kg]

nload Number of loads in AROMA network 5 -

P boiler
min Minimum boiler power 1 [kW]

P boiler
max Maximum boiler power 10 [MW]

P load
min Minimum load power 30 [kW]

P load
max Maximum load power 420 [kW]

ppump Differential pump pressure 5 [bar]

pvess Vessel fixed internal pressure 5 [bar]

Re Reynolds number 1287 -

ρ Water density 997 [kg/m3]

ρs Steel heat capacity per unit volume 3.12 · 106 [J/m3 K]

σins Pipe insulation thermal conductivity 0.02 [W/m K]

θmin Valve minimum opening area diameter 0.001 [m]

θn Nominal valve opening 1 -

T PID
i Boiler PID integral time 16 [s]

Text External temperature 25 [◦C]

Tref Load reference temperature 65 [◦C]

Ts TBPTT input-output subsequences length 200 -

142 | List of Parameters

Tsampling Sampling time {60,300} [s]

unom Nominal fluid velocity 1.5 [m/s]

UApipe
j Thermal conductance pipe-ambient * [W/K]

Upipe
j Heat transfer coefficient of the jth pipe wall * [W/m2 K]

V Volume of water inside the boiler 0.16 [m3]

Table 5.7: List of parameters used in the thesis

* It depends on the considered pipe (jth): the values are reported in [43].

143

List of Variables

Symbol Description SI unit
∆ppump Pressure drop between pump ports [bar]

ṁw Mass flow rate of water inside the mixing volume [kg/s]

ṁi Return mass flow rate of the ith load [kg/s]

ṁpump
in Mass flow rate of water entering the pump [kg/s]

ṁpump
out Mass flow rate of water leaving the pump [kg/s]

ṁr Overall return mass flow rate [kg/s]

P load
i Power of the ith load [W]

P boiler Boiler power [W]

ppump
in Input pressure of the pump [bar]

ppump
out Output pressure of the pump [bar]

Qamb Heat losses to ambient [W]

ρpipej Water density in the jth pipe [kg/m3]

T s
i Supply temperature of the ith load [K]

T r
i Return temperature of the ith load [K]

T r Overall return temperature [K]

T pipe
j Water temperature in the jth pipe [K]

Tin Temperature of water entering the mixing volume [K]

Tout Temperature of water leaving the mixing volume [K]

T pump
in Temperature of water entering the pump [K]

T pump
out Temperature of water leaving the pump [K]

T boiler
out Boiler outlet temperature [K]

T boiler
ref Boiler reference temperature [K]

Tw Temperature of water inside the mixing volume [K]

τ Mixing volume time constant [s]

upipe
j Flow velocity in the jth pipe [m/s]

Table 5.8: List of variables used in the thesis

145

List of Acronyms

Acronym Meaning

ADAM Adaptive Moment Estimation

ARMA AutoRegressive Moving Average

ARMAX AutoRegressive Moving Average with eXternal input

ARX AutoRegressive with eXternal input

BJ Box-Jenkins

CHP Combined Heat and Power

DHN District Heating Network

DHS District Heating System

EKF Extended Kalman Filter

EPANN Evolved Plastic Artificial Neural Network

FHCOP Finite-Horizon Control Optimization Problem

FIR Finite Impulse Response

GRU Gated Recurrent Unit

Ipopt Interior Point Optimizer

KGML Knowledge-Guided Machine Learning

LSTM Long Short-Term Memory

MISO Multiple Input Single Output

ML Machine Learning

MPC Model Predictive Control

MSE Mean Square Error

N4SID Numerical algorithm For Subspace State-Space System Identification

NLP Non-Linear Programming

NMPC Non-linear Model Predictive Control

NN Neural Network

NRMSE Normalized Root Mean Square Error

OE Output-Error

PB-ML Physics-based Machine Learning

PID Proportional-Integral-Derivative

146 | List of Acronyms

PI-RNN Physics-Informed Recurrent Neural Network

RMSE Root Mean Square Error

RMSProp Root Mean Square Propagation

RNN Recurrent Neural Network

SS State-Space

TBPTT Truncated Back-Propagation Through Time

TES Thermal Energy Storage

WGN White Gaussian Noise

147

Acknowledgments

La gratitudine per questo traguardo di un percorso così ricco è incommensurabile. Sono
tante le persone che mi hanno accompagnato e a cui devo un particolare riconoscimento.

In primis ringrazio il Professor Scattolini che mi ha dato l’opportunità di lavorare a
questo progetto e che mi ha seguito e guidato durante lo svolgimento con professionalità
ed esperienza. Sono molto grata per la fiducia che ha riposto in me, sia per l’esecuzione
della tesi sia per le possibili esperienze future.
Un ringraziamento particolare va senza dubbio al Professor La Bella, il cui aiuto e supporto
sono stati fondamentali in questi mesi e grazie al quale ho imparato inestimabili lezioni.
Con la sua preparazione e pazienza è stato una significativa fonte di consiglio e sostegno.
Un sincero grazie va anche a Fabio Bonassi, Ph.D. e al Dott. Lorenzo Nigro, che mi hanno
aiutata con le loro preziose competenze a rendere questo lavoro più sostanzioso.

Ringrazio immensamente i miei genitori e mio fratello per avermi sempre sostenuta in
tutte le mie scelte e fornito gli strumenti idonei per affrontarle. Il loro supporto è stato
di fondamentale importanza: devo loro buona parte del merito dei miei traguardi. Un
affettuoso ringraziamento anche alle mie nonne, zii e cugini che sono i miei fan numero
uno e il cui incoraggiamento è sempre fonte di orgoglio.

Uno speciale ringraziamento va sicuramente ad Anna, Clarisse, Cassolo, Sonia e Capri,
che durante gli anni universitari da fuorisede sono state una seconda famiglia per me
(o meglio, delle sorelle). Sono immensamente grata per aver trovato in loro non solo
delle preziose amiche, ma anche costanti fonti di ispirazione, consiglio e soprattutto di
ingenti risate e goliardate. Grazie a loro vivere a Milano è stata una delle esperienze
più arricchenti e significative della mia vita. Un generico grazie va anche a tutte le altre
speciali persone con cui ho condiviso per cinque anni la stravagante vita collegiale.

Ringrazio Ali, Mati e Virgia perché, nonostante la lontananza, sono da tanti (troppi!)
anni sempre al mio fianco nei momenti più importanti, divertenti ma anche complessi.

Un finale ringraziamento va all’ambiente galvanizzante del Politecnico e a tutte le persone
che lo compongono, in particolar modo ai miei compagni di università, dalle gestionali
agli automatici. Grazie a loro affrontare le sfide universitarie è stato non solo meno greve
ma anche più piacevole e stimolante. Infine, ringrazio le brillanti persone incontrate a
Losanna, grazie alla cui amicizia e ilarità l’Erasmus è stato un’esperienza decisamente
formativa e peculiare.

